

Lecture Notes in Computer Science 3360
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stefano Spaccapietra
Elisa Bertino Sushil Jajodia
Roger King Dennis McLeod
Maria E. Orlowska Leon Strous (Eds.)

Journal on
Data
Semantics II

13

Volume Editors

Stefano Spaccapietra
E-mail: stefano.spaccapietra@epfl.ch

Elisa Bertino
E-mail: bertino@cs.purdue.edu

Sushil Jajodia
E-mail: jajodia@gmu.edu

Roger King
E-mail: roger@cs.colorado.edu

Dennis McLeod
E-mail: mcleod@usc.edu

Maria E. Orlowska
E-mail: maria@itee.uq.edu.au

Leon Strous
E-mail: strous@iae.nl

Library of Congress Control Number: 2004117338

CR Subject Classification (1998): H.2, H.3, I.2, H.4, C.2

ISSN 0302-9743
ISBN 3-540-24208-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11371861 06/3142 5 4 3 2 1 0

The LNCS Journal on Data Semantics

Computerized information handling has changed its focus from centralized data
management systems to decentralized data exchange facilities. Modern distribution
channels, such as high-speed Internet networks and wireless communication
infrastructures, provide reliable technical support for data distribution and data access,
materializing the new popular idea that data may be available to anybody, anywhere,
anytime. However, providing huge amounts of data on request often turns into a
counterproductive service, making the data useless because of poor relevance or
inappropriate levels of detail. Semantic knowledge is the essential missing piece that
allows the delivery of information that matches user requirements. Semantic
agreement, in particular, is essential to meaningful data exchange.

Semantic issues have long been open issues in data and knowledge management.
However, the boom in semantically poor technologies, such as the Web and XML,
has prompted a renewed interest in semantics. Conferences on the Semantic Web, for
instance, attract crowds of participants, while ontologies on its own has become a hot
and popular topic in the database and artificial intelligence communities.

Springer's LNCS Journal on Data Semantics aims at providing a highly visible
dissemination channel for the most remarkable work that in one way or another
addresses research and development on issues related to the semantics of data. The
target domain ranges from theories supporting the formal definition of semantic
content to innovative domain-specific applications of semantic knowledge. This
publication channel should be of highest interest to researchers and advanced
practitioners working on the Semantic Web, interoperability, mobile information
services, data warehousing, knowledge representation and reasoning, conceptual
database modeling, ontologies, and artificial intelligence.

Topics of relevance to this journal include:
 semantic interoperability, semantic mediators
 ontologies
 ontology, schema and data integration, reconciliation and alignment
 multiple representations, alternative representations
 knowledge representation and reasoning
 conceptualization and representation
 multimodel and multiparadigm approaches
 mappings, transformations, reverse engineering
 metadata
 conceptual data modeling
 integrity description and handling
 evolution and change
 Web semantics and semistructured data
 semantic caching

VI The LNCS Journal on Data Semantics

 data warehousing and semantic data mining
 spatial, temporal, multimedia and multimodal semantics
 semantics in data visualization
 semantic services for mobile users
 supporting tools
 applications of semantic-driven approaches

These topics are to be understood as specifically related to semantic issues.

Contributions submitted to the journal and dealing with semantics of data will be
considered even if they are not within the topics in the list.

While the physical appearance of the journal issues looks like the books from the
well-known Springer LNCS series, the mode of operation is that of a journal.
Contributions can be freely submitted by authors and are reviewed by the Editorial
Board. Contributions may also be invited, and nevertheless carefully reviewed, as in
the case of issues that contain extended versions of best papers from major
conferences addressing data semantics issues. Special issues, focusing on a specific
topic, are coordinated by guest editors once the proposal for a special issue is
accepted by the Editorial Board. Finally, it is also possible that a journal issue be
devoted to a single text.

The journal published its first volume in 2003. This is the second volume, and it
will be followed by three volumes to appear in 2005.

The Editorial Board comprises one Editor-in-Chief (with overall responsibility)
and several members. The editor-in-chief has a four-year mandate to run the journal.
Members of the board have three-year mandates. Mandates are renewable. More
members may be added to the Editorial Board as appropriate

We are happy to welcome you into our readership and authorship, and hope we
will share this privileged contact for a long time.

 Stefano Spaccapietra

 Editor-in-Chief

JoDS Volume 2 – Guest Editorial

Conferences provide researchers with the fastest way to disseminate their ideas and
results to a selected community of other researchers in the same domain. Conferences,
however, must enforce limitations in the sizes of the written contributions as well as
in the time allocated for the on-site presentations of the contributions. They also have
limited audiences, although some publishers such as Springer have a dissemination
scheme that brings conference proceedings to much wider audiences than just the
actual participants at the conferences.

Publication of an extended version of a conference paper is a much appreciated
opportunity for researchers to widely disseminate a significantly improved
presentation of their work, where they can develop the appropriate motivations,
reasoning, results and comparative analysis. To foster dissemination of the best ideas
and results, the Journal on Data Semantics (JoDS) pursues a policy that includes
annually publishing extended versions of the best papers from selected conferences
whose scope encompasses or intersects the scope of the journal.

The selection for this issue comprises the International Conference on Ontologies,
Databases and Applications of Semantics (ODBASE), the International Conference
on Cooperative Information Systems (COOPIS), and the IFIP TC11 WG11.5
Working Conference on Integrity and Internal Control in Information Systems
(IICIS). Papers from these conferences were selected based on their quality,
relevance, and significance, and the viability of extending their results. All extended
papers were subject to a stringent review process and the authors were required to
respond to all concerns expressed by the reviewers before papers were accepted.

Four papers, showing consistently high reviews from the program committee, were

selected among those presented at the Ontologies, Databases and Applications of
Semantics (ODBase) conference, held in Catania, Italy, November 4–6, 2003. Three
of the papers have to do with the construction and maintenance of ontologies and
structured taxonomies. Incrementally Maintaining Materializations of Ontologies
Stored in Logic Databases (by Raphael Volz, Steffen Staab, and Boris Motik)
presents a method for propagating changes made to an ontology; the technique is
broadly applicable, as it is compatible with any ontology language that can be
translated into Datalog programs. Ontology Translation on the Semantic Web (by
Dejing Dou, Drew McDermott, and Peishen Qi) addresses the highly important
problem of resolving terminology differences between related ontologies; the
technique manages syntactic as well as semantic translations. Compound Term
Composition Algebra: the Semantics (by Yannis Tzitzikas, Anastasia Analyti, and
Nicolas Spyratos) presents an elegant, formal algebra for specifying the valid
compound terms in a taxonomy.

The fourth paper, Dynamic Pattern Mining: an Incremental Data Clustering
Approach (by Seokkyung Chung and Dennis McLeod) addresses one of the central
problems facing users of data mines – the incremental maintenance of a data mine
that is constantly updated. The paper deals specifically with services that provide

VIII JoDS Volume 2 – Guest Editorial

integrated access to news articles; the method described in the paper is simple yet
semantically powerful and quite efficient.

The volume continues with two papers that are comprehensive descriptions of the

topics of the two top-rated papers that appeared in the CoopIS portion of the
proceedings of the conference triad On the Move to Meaningful Internet Systems,
November 2003. The first paper, A Knowledge Network Approach for Implementing
Active Virtual Marketplaces, by Minsoo Lee, Stanley Su, and Herman Lam, presents
a network approach for implementing virtual marketplaces: bringing buyers and
sellers cooperatively together. The paper focuses on an infrastructure that enables
sharing of knowledge over the Web and thus effectively supports the formation of
virtual marketplaces on the Web. The concept of an active virtual marketplace is
realized using this infrastructure by allowing buyers and sellers to specify their
knowledge in the form of events, triggers, and rules. The knowledge network can
actively distribute and process these knowledge elements to help buyers and sellers to
locate and interact with each other.

The second paper, Stream Integration Techniques for Grid Monitoring, by Andy
Cooke, Alasdair Gray, and Werner Nutt, focuses on a technique for providing
information about the status of a cooperative computation grid by utilizing database
integration techniques. This novel approach provides an infrastructure for publishing
and querying grid monitoring data. Emphasis is placed on the use of the technique for
distributed sets of data streams, which provide information about the changes over
time of a data source. The concepts and mechanisms devised can also be applied more
generally where there is a need for publishing and querying information in a
distributed manner.

Finally, the volume contains two papers originally presented at the 6th IFIP TC 11

WG 11.5 Working Conference on Integrity and Internal Control in Information
Systems, which was held November 13–14, 2003 in Lausanne, Switzerland.
Traditionally, access controls have been used to limit the availability of data to users;
however, they do not protect unauthorized disclosure of sensitive information from
careless or malicious insiders with authorized access to the system. The first paper
Information Release Control: a Learning-Based Architecture, by Claudio Bettini, X.
Sean Wang, and Sushil Jajodia, explores the information release control paradigm,
which is based on checking data when they are being released across organizational
boundaries. Rather than relying simply on source/destination addresses, as in current
firewall systems, or on simple “dirty word” matching as in current filtering software,
the checking process analyzes the semantics of the released data. This paper
formalizes this process and presents the architecture of a system that incorporates a
module for learning release constraints.

Nowadays, surveillance devices such as video cameras and microphones have
become commonplace in our society. The second paper, Enforcing Semantics-Aware
Security in Multimedia Surveillance, by Naren Kodali, Csilla Farkas, and Duminda
Wijesekera, considers the surveillance data flowing at secured facilities such as
airports, nuclear power plants, and national laboratories. Typically, different parts of
such facilities have different degrees of sensitivity. Likewise, human guards are
categorized according to their rights of access to various locations within the

JoDS Volume 2 – Guest Editorial IX

facilities. The main security requirement is that the guards can view data gathered
from locations whose sensitivity is consistent with their access rights. This paper
shows how to model the surveillance requirements using the synchronized multimedia
integration language (SMIL) with appropriate multilevel security enhancements.

 Guest Editors

ODBASE Roger (Buzz) King, University of Colorado at Boulder, USA

Maria Orlowska, University of Queensland, Australia

COOPIS Elisa Bertino, Purdue University, USA

Dennis McLeod, University of Southern California, Los Angeles,
USA

IICIS Sushil Jajodia, George Mason University, USA

Leon Strous, De Nederlandsche Bank, The Netherlands

We are pleased to express our gratitude to the reviewers, who invested much of
their time in careful analysis and evaluation of the submissions:

Dave Abel, CSIRO, Australia
Karl Aberer, École Polytechnique Fédérale de Lausanne, Switzerland
John Carlis, University of Minnesota, USA
Tiziana Catarci, University of Rome, Italy
Brian Cooper, Georgia Institute of Technology, USA
Guido Governatori, University of Queensland, Australia
Michael Kifer, Stonybrook State University of New York, USA
Dik Lee, University of Science and Technology, Hong Kong, China
Qing Li, City University of Hong Kong, Hong Kong, China
Leo Mark, Georgia Institute of Technology, USA
Ravi Mukkamala, Old Dominion University, USA
Erich Neuhold, Darmstadt University of Technology, Germany
Brajendra Panda, University of Arkansas, Fayetteville, USA
Evagelia Pitoura, University of Ioannina, Greece
Amit Sheth, University of Georgia, USA
Antonio Si, Oracle, USA
Steffen Staab, University of Koblenz-Landau, Germany
Sean Wang, University of Vermont, USA
Chao Yao, George Mason University, USA
Roger Zimmermann, University of Southern California, USA

X JoDS Editorial Board

JoDS Editorial Board1

Carlo Batini, Università di Milano Bicocca, Italy

Tiziana Catarci, Università di Roma “La Sapienza”, Italy

Lois Delcambre, Portland State University, USA

David W. Embley, Brigham Young University, USA

Jérôme Euzenat, INRIA Rhône-Alpes, France

Dieter Fensel, University of Innsbruck, Austria and DERI, Galway, Ireland

Nicola Guarino, National Research Council, Italy

Jean-Luc Hainaut, FUNDP Namur, Belgium

Ian Horrocks, University of Manchester, UK

Larry Kerschberg, George Washington University, USA

Maurizio Lenzerini, Università di Roma “La Sapienza”, Italy

Tok Wang Ling, National University of Singapore, Singapore

Salvatore T. March, Vanderbilt University, USA

Robert Meersman, Free University Brussels, Belgium

John Mylopoulos, University of Toronto, Canada

Shamkant B. Navathe, Georgia Institute of Technology, USA

Antoni Olivé, Universitat Politècnica de Catalunya, Spain

José Palazzo M. de Oliveira, Universidade Federal do Rio Grande do Sul, Brazil

Christine Parent, University of Lausanne, Switzerland

John Roddick, Flinders University, Australia

Klaus-Dieter Schewe, Massey University, New Zealand

Bernhard Thalheim, Brandenburg University of Technology, Germany

Yair Wand, University of British Columbia, Canada

Esteban Zimányi, ULB, Brussels, Belgium

1 The late Yahiko Kambayashi (Kyoto University, Japan) was a member of the JoDS

Editorial Board.

Table of Contents

International Conference on Ontologies, DataBases,
and Applications of Semantics for Large Scale
Information Systems (ODBase 2003)

Incrementally Maintaining Materializations of Ontologies Stored in
Logic Databases . 1
Raphael Volz, Steffen Staab, and Boris Motik

Ontology Translation on the Semantic Web . 35
Dejing Dou, Drew McDermott, and Peishen Qi

Compound Term Composition Algebra: The Semantics 58
Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos

Dynamic Pattern Mining: An Incremental Data Clustering Approach 85
Seokkyung Chung and Dennis McLeod

International Conference on Cooperative Information
Systems (CoopIS 2003)

A Knowledge Network Approach for Implementing Active Virtual
Marketplaces . 113
Minsoo Lee, Stanley Y.W. Su, and Herman Lam

Stream Integration Techniques for Grid Monitoring . 136
Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

6th IFIP TC 11 WG 11.5 Working Conference on
Integrity and Internal Control in Information
Systems (IICIS 2003)

Information Release Control: A Learning-Based Architecture 176
Claudio Bettini, X. Sean Wang, and Sushil Jajodia

Enforcing Semantics-Aware Security in Multimedia Surveillance 199
Naren Kodali, Csilla Farkas, and Duminda Wijesekera

Author Index . 223

Incrementally Maintaining Materializations of

Ontologies Stored in Logic Databases

Raphael Volz1,2, Steffen Staab1, and Boris Motik2

1 Institute AIFB, University of Karlsruhe, Germany
lastname@aifb.uni-karlsruhe.de

2 FZI, University of Karlsruhe, Germany
volz@fzi.de

Abstract. This article presents a technique to incrementally maintain
materializations of ontological entailments. Materialization consists in
precomputing and storing a set of implicit entailments, such that frequent
and/or crucial queries to the ontology can be solved more efficiently. The
central problem that arises with materialization is its maintenance when
axioms change, viz. the process of propagating changes in explicit axioms
to the stored implicit entailments.
When considering rule-enabled ontology languages that are operational-
ized in logic databases, we can distinguish two types of changes. Changes
to the ontology will typically manifest themselves in changes to the rules
of the logic program, whereas changes to facts will typically lead to
changes in the extensions of logical predicates. The incremental main-
tenance of the latter type of changes has been studied extensively in
the deductive database context and we apply the technique proposed
in [30] for our purpose. The former type of changes has, however, not
been tackled before.
In this article we elaborate on our previous papers [32, 33], which ex-
tend the approach of [30] to deal with changes in the logic program.
Our approach is not limited to a particular ontology language but can
be generally applied to arbitrary ontology languages that can be trans-
lated to Datalog programs, i.e. such as O-Telos, F-Logic [16] RDF(S), or
Description Logic Programs [34].

1 Introduction

Germane to the idea of the Semantic Web are the capabilities to assert facts
and to derive new facts from the asserted facts using the semantics specified by
an ontology. Both current building blocks of the Semantic Web, RDF [13] and
OWL [21], define how to assert facts and specify how new facts should be derived
from stated facts.

The necessary derivation of entailed information from asserted information
is usually achieved at the time clients issue queries to inference engines such
as logic databases. Situations where queries are frequent or the procedure to
derive entailed information is time consuming and complex typically lead to
low performance. Materialization can be used to increase the performance at

S. Spaccapietra et al. (Eds.): Journal on Data Semantics II, LNCS 3360, pp. 1–34, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 Raphael Volz, Steffen Staab, and Boris Motik

query time by making entailed information explicit upfront. Thereby, the re-
computation of entailed information for every single query is avoided.

Materialization has been applied successfully in many applications where
reading access to data is predominant. For example, data warehouses usually
apply materialization techniques to make online analytical processing possible.
Similarly, most Web portals maintain cached web pages to offer fast access to
dynamically generated web pages.

We conjecture that reading access to ontologies is predominant in the Se-
mantic Web and other ontology-based applications, hence materialization seems
to be a promising technique for fast processing of queries on ontologies.

Materialization is particularly promising for the currently predominant ap-
proach of aggregating distributed information into a central knowledge base (cf.
[8, 14, 31, 20]). For example, the OntoWeb3 Semantic portal [28] employs a
syndicator (cf. Figure 1), which regularly visits sites specified by community
members and transfers the detected updates into a central knowledge base in a
batch process. Hence, the knowledge base remains unchanged between updates
for longer periods of time.

Fig. 1. OntoWeb Architecture

The OntoWeb portal, however, provides answers to queries issued on the
knowledge base whenever visitors browse the portal content. This is due to the
fact that most queries are hard-coded into the definition of dynamic Web pages,

3 http://www.ontoweb.org/.

Incrementally Maintaining Materializations 3

which are generated for every request. In applications such as OntoWeb, mate-
rialization turns out to be a sine qua non.4

Central to materialization approaches is the issue of maintaining a material-
ization when changes occur. This issue can be handled by simply recomputing
the whole materialization. However, as the computation of the materialization
is often complex and time consuming, it is desirable to apply more efficient
techniques in practice, i.e. to incrementally maintain a materialization.

1.1 Contribution

We present a technique for the incremental maintenance of materialized ontolo-
gies. Our technique can be applied to a wide range of ontology languages, namely
those that can be axiomatized by a set of rules5.

The challenge that has not been tackled before comes from the fact that
updates of ontology definitions are equivalent to the updates and new definitions
of rules, whereas existing maintenance techniques only address the update of
ground facts.

To cope with changing rules, our solution extends a declarative algorithm
for the incremental maintenance of views [30] that was developed in the deduc-
tive database context. We show the feasibility of our solution in a performance
evaluation.

1.2 Organization

The remainder of the article is organized as follows: Section 2 reviews how cur-
rent Web ontology languages such as RDF(S) and OWL interplay with rules.
Section 3 presents the underlying principles which are applied to achieve incre-
mental maintenance of a materialization. Section 4 recapitulates the incremental
maintenance algorithm presented in [30] , presents a novel modular rewriting al-
gorithm based on generator functions and shows how this algorithm deals with
changes to facts. Section 5 extends this algorithm to deal with changing rules as
they result from changes in the ontology. Section 6 sketches how the developed
techniques can be applied in implementations of RDF rule languages. Section 7
describes our prototypical implementation. Section 8 performs a performance
analysis and shows the benefits of our approach. Section 10 summarizes our
contribution and discusses further uses.

2 Web Ontology Languages and Logic Databases

In the brief history of the Semantic Web, most applications, e.g. [7], have imple-
mented the logical entailment supported by ontology languages either directly
4 Even though in OntoWeb, due to the unavailability of the solution developed in

this article, the problem was approached by caching the Web pages through a proxy
server.

5 The underlying rule language used for our approach is Datalog with stratified nega-
tion.

4 Raphael Volz, Steffen Staab, and Boris Motik

using Logic Programming techniques, e.g. [4, 25], or by relying on (available)
logic databases6 [22, 27]. Furthermore, a large expressive fragment of the re-
cently standardized Web Ontology Language (OWL) can be implemented in
logic databases [34].

2.1 Axiomatization of Ontology Languages

Systems like SilRi [7], CWM7, Euler [25], JTP8 or Triple [27] and Concept-
Base [15] implement the semantics of a particular ontology language via a static
axiomatization, i.e. a set of rules. For example, Figure 2 presents the Datalog
axiomatization of the RDF vocabulary description language (RDFS) [5]. This
axiomatization implements the semantics of RDF specified by the RDF model
theory [13] (without datatype entailments and support for stronger iff semantics
of domain and ranges). The ontology and associated data is stored in a single
ternary predicate t, i.e. the extension of t stores all triples that constitute a
particular RDF graph.

t(P,a,rdf:Property) :- t(S,P,O). rdf1
t(S,a,C) :- t(P,domain,C), t(S,P,O). rdfs2
t(O,a,C) :- t(P,range,C), t(S,P,O). rdfs3
t(S,a,Resource) :- t(S,P,O). rdfs4a
t(O,a,Resource) :- t(S,P,O). rdfs4b
t(P,subPropertyOf,R) :- t(Q,subPropertyOf,R), t(P,subPropertyOf,Q). rdfs5a
t(S,R,0) :- t(P,subPropertyOf,R), t(S,P,O). rdfs6
t(C,a,Class) :- t(C,subClassOf,Resource). rdfs7
t(A,subClassOf,C) :- t(B,subClassOf,C), t(A,subClassOf,B). rdfs8
t(S,a;B) :- t(S,a,A), t(A,subClassOf,B). rdfs9
t(X,subPropertyOf,member) :- t(X,a,ContainerMembershipProperty). rdfs10
t(X,subClassOf,Literal) :- t(X,a,Datatype). rdfs11
t(Resource,subClassOf,Y) :- t(X,domain,Y), t(rdf:type,subPropertyOf,X). rdfs12

Fig. 2. Static Datalog rules for implementing RDF(S)

2.2 Dynamic Rule Sets

The set of rules is typically not immutable. With the advent of higher layers
of the Semantic Web stack, i.e. the rule layer, users can create their own rules.
6 We use the term logic database over the older term deductive databases since the

later is very closely associated with Datalog, a particular Logic Programming lan-
guage that is frequently used in logic databases. Modern logic databases such as
XSB [26] and CORAL [24] support more expressive Logic Programming languages
that include function symbols and nested expressions. Furthermore, several lectures,
e.g. http://user.it.uu.se/ṽoronkorov/ddb.htm nowadays use this term.

7 http://www.w3.org/2000/10/swap/doc/cwm
8 http://ksl.stanford.edu/software/jtp/

Incrementally Maintaining Materializations 5

Hence, we are facing a scenario where not only base facts can change but also
the set of rules. This requires the ability to maintain a materialization in this
situation.

Besides support for a rule layer, the ability to maintain a materialization un-
der changing rule sets is also required for approaches where the semantics of the
ontology language is not captured via a static set of rules but instead compiled
into a set of rules. Such an approach is for example required by Description Logic
Programs (DLP) [34], where OWL ontologies are translated to logic programs.

2.2.1 Semantic Web Rule Layer We now briefly present some languages for
the specification of Semantic Web rules that may be compiled into the paradigm
we use. The Rule Markup Initiative9 aims to develop a canonical Web language
for rules called RuleML. RuleML covers the entire rule spectrum and spans from
derivation rules to transformation rules to reaction rules. It has a well-defined
Datalog subset, which can be enforced using XML schemas, and for which we can
employ the materialization techniques developed within this paper. The reader
may note, that materialization is not an issue for many other aspects found in
RuleML, e.g. transformation rules or reaction rules.

In parallel to the RuleML iniative, Notation3 (N3)10 has emerged as
a human-readable language for RDF/XML. Its aim is to optimize ex-
pression of data and logic in the same language and has become a
serious alternative since many systems that support inference on RDF
data, e.g. cwm11, Euler (cf. http://www.agfa.com/w3c/euler/), Jena2 (cf.
http://www.hpl.hp.com/semweb/jena.htm), support it. The rule language sup-
ported by N3 is an extension of Datalog with existential quantifiers in rule heads.
Hence, the materialization techniques developed within this paper can be applied
to the subset of all N3 programs which do not make use of existential quantifi-
cation in the head.

2.2.2 Description Logic Programs (DLP) Both of the above mentioned
approaches allow the definition of rules but are not integrated with the ontology
layer in the Semantic Web architecture. Description Logic Programs [34] aim to
integrate rules with the ontology layer by compiling ontology definitions into a
logic program which can later be extended with additional rules. This approach
can deal with an expressive subset of the standardized Web ontology language
OWL (i.e. OWL without existential quantification, negation and disjunction in
rule heads).

OWL classes are represented in the logic database as unary predicates and
OWL properties is represented as binary predicates. Classes may be constructed
using various constructors (cf. Table 1). The OWL T-Box may consist of class
inclusion axioms and class equivalence axioms, which are mapped to logical

9 cf. http://www.ruleml.org/
10 cf. http://www.w3.org/DesignIssues/Notation3.html
11 cf. http://www.w3.org/2000/10/swap/doc/cwm

6 Raphael Volz, Steffen Staab, and Boris Motik

OWL Abstract Syntax Logic Database

Class (A partial D1 . . . Dn)
⋃

i∈[1,n]
ϕLP(A � Di)

Class (A complete D1 . . . Dn)
⋃

i∈[1,n]
ϕLP(A ≡ Di)

EquivalentClasses (D1 . . . Dn)
⋃

i∈[1,n]
ϕLP(D1 ≡ Di)

SubClassOf (D1D2) ϕLP(D1 � D2)

ϕLP(C ≡ D)

{
ϕLP(C � D)
ϕLP(D � C)

ϕLP(C � D) ϕR
LP(D, x):-ϕL

LP(C, x).

ϕR
LP(A, x):-B. A(x):-B.

ϕR
LP(∃R.{i}, x):-B. R(x, i):-B.

ϕR
LP(C � D, x):-B.

{
ϕR

LP(C,x):-B.

ϕR
LP(D, x):-B.

ϕR
LP(∀R.C, x):-B. ϕR

LP(C, yi):-R(x, yi), B.
H:-ϕL

LP(∃R.{i}, x),B. H:-R(x, i), B.

H:-ϕL
LP(A, x),B. H:-A(x),B.

H:-ϕL
LP((∃R.C), x),B. H:-R(x, yi), C(yi), B.

H:-ϕL
LP((C � D), x),B. H:-ϕL

LP(C,x), ϕL
LP(C, x),B.

H:-ϕL
LP((C � D), x),B.

{
H:-ϕL

LP(C, x), B.

H:-ϕL
LP(D, x),B.

Table 1. DLP representation of OWL classes in logic databases

implications, i.e. rules12. Similarly, the T-Box may also consist of inclusion and
equivalence axioms between properties. Properties may have inverses and may
be defined to be symmetric and transitive (cf. Table 2).

Example 1. The following example OWL fragment declares Wine to be potable
liquids who are made by Wineries:

Wine � PotableLiquid � ∀hasMaker.Winery

This will be translated to the following set of rules:

PotableLiquid(X) :- Wine(X).
Winery(Y) :- Wine(X), hasMaker(X, Y).

We can easily see that a change to the class and property structure of an
ontology will result in a change of the compiled rules. Again, it is necessary to
be able to maintain a materialization in case of such a change.

An OWL A-Box, i.e. individuals and property fillers, are represented as facts
in the logic database, where individuals i instantiating a class C and fillers (a, b)
of a property P are simple facts of the form C(i) and P (a, b).

12 Equivalence is decomposed into two inverse inclusion axioms

Incrementally Maintaining Materializations 7

OWL Abstract Syntax Logic Database

ObjectProperty (P
super(Q1) . . . super(Qn)

⋃
i∈[1,n]

{Qi(x, y):-P (x, y).}
domain(C1) C1(x):-P (x, y).

.
domain(Cn) Cn(x):-P (x, y).
range(R1) R1(y):-P (x, y).

.
range(Rn) Rn(y):-P (x, y).
inverseOf(Q) P (x, y):-Q(y, x).

Q(x, y):-P (y, x).
Symmetric P (x, y):-P (y, x).
Transitive P (x, z):-P (x, y), P (y, z).

)

EquivalentProperties (P1 . . . Pn)
⋃

i∈[1,n]
{P1(x, y):-Pi(x, y).Pi(x, y):-P1(x, y).}

SubPropertyOf (P Q) Q(x, y):-P (x, y).

Table 2. DLP Representation of OWL properties in logic databases

2.3 Differentiating Between Asserted and Entailed Information

The fundamental requirement for our approach to maintenance is the ability to
distinguish entailed information from asserted information. This ability is re-
quired in order to propagate changes. The requirement also commonly arises
in many ontology-based applications [2], which often need to differentiate be-
tween asserted information and information that has been derived by making
use of TBox axioms, e.g. one could prevent users from updating entailed infor-
mation [3].

To achieve this differentiation, all TBox axioms are translated into rules
between purely intensional predicates Cidb, Pidb. ABox assertions, however, are
stored in dedicated extensional predicates Cedb, Pedb. The connection between
the intensional and the extensional database is made using simple rules that
derive the initial (asserted) extension of the intensional predicates:

Cidb(x):-Cedb(x).
Pidb(x, y):-Pedb(x, y).

3 Maintenance Principles

This section discusses how the two main kinds of updates that have been men-
tioned in the introduction of the chapter, viz. updates to facts and rules, affect
the materialization of an example knowledge base. Based on this discussion,
we identify the main assumptions that underly the approaches for incremental
maintenance presented in the subsequent sections.

8 Raphael Volz, Steffen Staab, and Boris Motik

As an example, we use the genealogical relationships between the different
(more prominent) members of the Bach family. The relevant subset of the ABox
is presented in Figure 3.

3.1 Updates to Facts

Since we expect that the historic data about the Bach family members in our
knowledge base is unlikely to change, we choose to materialize the closure of the
transitive ancestorOf property to speed up query processing. Figure 3 depicts an
excerpt of the family tree of the Bach family, where the left-hand side of Figure 3
depicts the asserted property fillers. The right-hand side of the Figure depicts the
transitive closure of the ancestorOf graph. We will now consider how updates,
which we consider as deletions and insertions only, will affect the materialization
(cf.lower part of Figure 3).

3.1.1 Deletions Let us assume that we have to revoke an asserted property
filler, since a historian finds out that Johann Sebastian was not the father of
Wilhelm Friedemann. Clearly, this has consequences to our materialization. For
example, Johann Ambrosius is no longer an ancestor of Wilhelm Friedemann.
However, Johannes is still an ancestor of Wilhelm Friedemann, since not only
Johann Sebastian but also his cousin and first wife Maria Barbara are descen-
dants of Johannes .

If we maintain the materialization of the graph depicted in Figure 3 our-
selves, a natural and straightforward approach proceeds in two steps. In order
to delete links that do not hold any longer, we first mark all links that could
have potentially been derived using the link leading from Wilhelm Friedemann
to the nodes in the graph that possibly interact with the deleted link, viz. are
also connected with Johann Sebastian. As the second step, we check whether
the deletion mark is correct by reconsidering whether the respective link could
be derived on some other way by combining the links supported by the updated
source graph. If a mark is determined to be correct, we can delete the appropriate
link in our source graph.

This two staged principle for deletion is common to most approaches for the
incremental maintenance of materializations [11, 30, 12] and is applied by the
approach presented in Section 4.

3.1.2 Insertions Now assume that we assert that Johann Sebastian is the
ancestor of another Johann Christian. Clearly, we can manually derive in the
example graph that Johann Christian must be linked with the nodes that can
possibly interact with the new link, viz. are also connected with Johann Sebastian
in the updated source graph. All new links discovered in this way have to be
added to the materialization.

3.2 Updates to Rules

A typical source of updates in Web ontologies is the change of TBox axioms,
since ontologies have to evolve with their applications and react to changing

Incrementally Maintaining Materializations 9

Fig. 3. Bach Family Tree Excerpt

application requirements [19, 20]. Similarly, the advent of a rule layer in the
Semantic Web will lead to changing rules. In the case of DLP, both situations,
changing TBox axioms and changing rules, are actually equivalent since they
manifest both themselves as changes to the logic program LP .

Let’s assume that our TBox states that the transitive ancestorOf property is
a specialization of the inDynasty property (which is not necessarily transitive),
i.e. T = {T0, T1} (cf. Table 3). Let’s additionally assume that our ABox only con-
tains property fillers for ancestorOf, e.g. the tuples {(h, jc1), (j, h), (j, c) . . .},
where each constant is the abbreviation for the name of an individual in the

10 Raphael Volz, Steffen Staab, and Boris Motik

Axiom OWL DLP

T0 SubPropertyOf (ancestorOf inDynasty) inDynasty(x, y) :- ancestorOf(x, y)
T1 ObjectProperty (ancestorOf Transitive) ancestorOf(x, y) :- ancestorOf(x, z),

ancestorOf(z, y).

Table 3. Example TBox T

Bach family tree (cf. Figure 3). Clearly, the extension of both ancestorOf and
inDynasty are equivalent in this particular knowledge base, since inDynasty
has no own property fillers.

Manipulating the TBox T by deleting axiom T0 leads to the situation that
the extension of inDynasty is empty, since the derivations supported by the
respective axiom are no longer supported.

Now assume that we add a new axiom T2 to the old T , i.e. T = T ∪ {T2},
that states that the property inDynasty is symmetric:

Axiom OWL DLP
T2 ObjectProperty (inDynasty Symmetric) inDynasty(x, y):-inDynasty(y, x).

Apparently, the new extension of inDynasty will now contain the tuple
(jc1, c) (among others), which is derived by the combination of the existing
axioms and the new axiom.

Unlike the change of facts, we do not only have an interaction of particular
(inserted or deleted) facts with existing facts, but also the interaction of (inserted
or deleted) rules with all other rules. In particular, we can observe that we need to
consider all rules defining a predicate to determine the extension of the predicate.

The approach to maintenance presented in Section 5 will therefore recompute
the extensions of all predicates, which are redefined, i.e. are the head of changed
rules. We will, however, reuse the mechanisms of propagating the resulting fact
changes to other predicates (and possibly back to the predicate in case of cycles)
from the maintenance procedure for facts (cf. next section).

4 Maintaining Changing Facts

This section presents the maintenance of a materialization when facts change,
viz. new tuples are added or removed from the extension of a predicate.

4.1 Approach

We reuse the declarative variant [30] of the delete and re-derive (DRed) algo-
rithm proposed in [11]. DRed takes the three steps illustrated in Section 3.1 to
incrementally maintain the materialization of an intensional database predicate:

1. Overestimation of deletion: Overestimates deletions by computing all direct
consequences of a deletion.

Incrementally Maintaining Materializations 11

2. Rederivation: Prunes those estimated deletions for which alternative deriva-
tions (via some other facts in the program) exist.

3. Insertion: Adds the new derivations that are consequences of insertions to
extensional predicates.

The declarative version13 of DRed maintains the materialization of a given
predicate by means of a maintenance program. The maintenance program is
rewritten from the original program using several rewriting patterns.

The goal of the rewriting is the provision of a pair of maintenance predicates
P+ and P− for every materialized predicate P , such that the extensions of P+

and P− contain the changes that are needed to maintain P after the maintenance
program is evaluated on a given set of extensional insertions P Ins and deletions
PDel.

The maintenance process is carried out as follows: First, we setup mainte-
nance, i.e. the maintenance program is created for a given source program and
the initial materialization of intensional predicates is computed.

Whenever extensional changes occur, the actual maintenance is carried out.
In this step, we first put insertions (deletions) to an extensional predicate Pedb

into the extension of the predicate P Ins
edb (PDel

edb). We then evaluate the mainte-
nance program. For every intensional predicate Pidb, the required incremental
changes, viz. insertions and deletions, can be found in the extension of P+

idb

and P−
idb. We use these changes to update the materialization of the intensional

predicate P and update Pedb with the explicit changes P Ins
edb and PDel

edb , while the
extensions of the later predicates are deleted.

4.2 Maintenance Rewritings

The maintenance of an intensional predicate P is achieved via seven maintenance
predicates :

1. P itself contains the (old) materialization.
2. PDel receives so-called deletion candidates, which are the aforementioned

overestimation of facts that ought to be deleted from the materialization.
For extensional predicates, PDel contains explicitly what should be removed
from the materialization.

3. P Ins contains the facts that ought to be inserted into the materialization.
For extensional predicates, P Ins contains the explicit insertions that were
asserted by the user.

4. PRed receives those facts that are marked for deletion but have alternative
derivations.

13 The benefit of reusing the declarative version of DRed with respect to the original
(procedural) version is that it allows us to reuse generic logic databases for the
evaluation of the maintenance program. This also motivates why we did not use the
optimized version provided in [30], since the optimization requires logic databases
to evaluate the maintenance program using the supplementary magic set technique,
which is not used in all logic databases (e.g. XSB [26]).

12 Raphael Volz, Steffen Staab, and Boris Motik

5. PNew describes the new state of the materialization after updates.
6. P+ receives the net insertions required to maintain the materialization of P .
7. P− receives the net deletions required to maintain the materialization of P .

New Materialization For every intensional predicate P , PNew captures the new
materialization, which is constituted of all old data that has not been deleted
(N1). Additionally, it contains re-derived data (N2) and inserted data (N3):

(N1) PNew:-P,notPDel.
(N2) PNew:-PRed.
(N3) PNew:-P Ins.

For every extensional database predicate P , we only instantiate the rules (N1

and N3) to define an auxiliary predicate PNew. PNew is used in the rewritings
for insertions and re-derivation of dependent intensional predicates.

Differentials The following differentials P+ and P− compute positive and neg-
ative deltas, i.e. the changes that are necessary to incrementally maintain the
stored materialization of an intensional predicate P :

P+:-P Ins,notP.
P−:-PDel,notP Ins,notPRed.

Deletion Candidates The deletion candidates PDel are constituted by all possible
combinations between deleted facts of a given body predicate and the remaining
body predicates. Therefore, n deletion rules are created for every rule with n
conjuncts in the body:

(Di): PDel:-R1, . . . , Ri−1, R
Del
i , Ri+1, . . . , Rn.

If Ri is an extensional predicate, RDel
i contains those facts that are explicitly

deleted from Ri. Otherwise, RDel
i contains the aforementioned overestimation.

Re-derivations The re-derivations PRed are computed by joining the new states
of all body predicates with the deletion candidates:

(R): PRed:-PDel, RNew
1 , . . . , RNew

n .

Insertions Insertions P Ins for intensional predicates P are calculated by ordinary
semi-naive rewriting, i.e. by constructing rules (Ii) that join the insertions into
a body predicate with the new materializations of all other body predicates:

(Ii): P Ins :- RNew
1 , . . . , RNew

i−1 , RIns
i , RNew

i+1 , . . . , RNew
n .

If Ri is an extensional predicate, RIns
i contains those facts that are explicitly

inserted into Ri.

Incrementally Maintaining Materializations 13

4.3 Maintenance Programs

A logic program LP consists of a finite set of rules of the form H:-B1, . . . , Bn.,
where H, Bi ∈ P. We call P the set of predicates used in LP . Without loss of
generality we assume that P can be partioned into two disjoint sets of inten-
sional and extensional predicates, i.e. P = Pidb ∪ Pedb and Pidb ∩ Pedb = ∅. A
maintenance program is generated from a program LP through the application
of generator functions (cf. Table 4).

Generator Parameter Rewriting Result

Predicate

θidb P ∈ Pidb θNew
idb (P) ∪ θIns

idb (P) ∪ θDel
idb (P) ∪ θRed

idb (P)
θNew

idb P ∈ Pidb {θNew
1 (P)} ∪ {θNew

2 (P)} ∪ {θNew
3 (P)}

θNew
edb P ∈ Pedb {θNew

1 (P)} ∪ {θNew
3 (P)}

θNew
1 P ∈ P P New:-P,notP Del.

θNew
2 P ∈ Pidb P New:-P Red.

θNew
3 P ∈ P P New:-P Ins.

θ+
idb P ∈ Pidb P+:-P Ins,notP.

θ−
idb P ∈ Pidb P−:-P Del,notP Ins,notP Red.

θIns
idb P ∈ Pidb {∪θIns(r)|∀r ∈ rules(P)}

θDel
idb P ∈ Pidb {∪θDel(r)|∀r ∈ rules(P)}

θRed
idb P ∈ Pidb {θRed(r)|∀r ∈ rules(P)}

Rule

θ H:-B1, . . . , Bn. {θRed} ∪ θDel ∪ θIns

θRed H:-B1, . . . , Bn. HRed:-HDel, BNew
1 , . . . , BNew

n .

θDel H:-B1, . . . , Bn. {HDel:-B1, . . . , Bi−1, B
Del
i , Bi+1, . . . , Bn.}

θIns H:-B1, . . . , Bn. {HIns:-BNew
1 , . . . , BNew

i−1 , BIns
i , BNew

i+1 , . . . , BNew
n .}

Table 4. Rewriting Functions (derived from [30])

Definition 1 (Maintenance Program). A maintenance program LPM of a
logic program LP is a set of maintenance rules such that:

1. ∀P ∈ Pidb : θidb(P) ∈ LPM

2. ∀P ∈ Pedb : θNew
edb (P) ∈ LPM

The θidb and θNew
edb rewriting functions themselves call other rewriting func-

tions presented in Table 4. For example, the function θ : R → MR rewrites
a rule R ∈ LP into a set of maintenance rules MR by instantiating rewriting
patterns for deletion θDel, insertion θIns and rederivation θRed. By definition, θ
maps every rule with n body literals into 2 ∗ n + 1 maintenance rules.

The reader may note that the rewriting makes use of two auxiliary functions:

– head : LP → Pidb maps a rule to its rule head.
– rules : Pidb → R maps rule heads to a set of rules R, such that:

∀P ∈ Pidb : rules(P) = {R ∈ R|head(R) = P}

14 Raphael Volz, Steffen Staab, and Boris Motik

Example 2 (Maintenance Rewritings). Let us return to the Bach family tree
example established in Section 3.1 and consider all edges between the different
individuals depicted in Figure 3 as fillers of the transitive property ancestorOf.

Let us consider the following logic program LP , which generated from a sim-
ple ontology containing one single (transitive) property called ancestorOf.The
second rule implements the differentiation between asserted and entailed infor-
mation, that was described in Section 2.3:

(R1) ancestorOf(x, z):-ancestorOf(x, y),ancestorOf(y, z).
(R2) ancestorOf(x, y):-ancestorOfedb(x, y).

In the following we will use the abbreviation A for ancestorOf.
Since LP includes one intensional predicate A and one extensional predicate

Aedb, the generation of the maintenance program LPM only involves to apply
θidb to A and θNew

edb to Aedb:

θNew
edb (Aedb) = {ANew

edb (x, y):-Aedb(x, y),notADel
edb (x, y). (θNew

1 (Aedb))
ANew

edb (x, y):-AIns
edb (x, y).} (θNew

3 (Aedb))

θidb(A) = {ADel(x, y):-ADel
edb (x, y). (θDel(R2))

ARed(x, y):-ADel(x, y),ANew
edb (x, y). (θRed(R2))

AIns(x, y):-AIns
edb (x, y). (θIns(R2))

ANew(x, y):-A(x, y),notADel(x, y). (θNew
1 (A))

ANew(x, y):-ARed(x, y). (θNew
2 (A))

ANew(x, y):-AIns(x, y). (θNew
3 (A))

ADel(x, z):-ADel(x, y),A(y, z). (θDel(R1))

ADel(x, z):-A(x, y),ADel(y, z). (θDel(R1))
ARed(x, z):-ADel(x, z), ANew(x, y), ANew(y, z). (θRed(R1))

AIns(x, z):-AIns(x, y), ANew(y, z). (θIns(R1))
AIns(x, z):-ANew(x, y),AIns(y, z).} (θIns(R1))

LPM = θidb(A) ∪ θNew
edb (Aedb)

The invocation of the θNew
edb generator on Aedb initiates the invocation of the

(θNew
1 (Aedb)) and (θNew

3 (Aedb)) generators and collects their results. Similarly,
the invocation of the θidb generator on A leads to the invocation of rules on A
to retrieve the rules R1, R2 and the invocation of θNew

1 , . . . , θIns(R1).

4.4 Size of Maintenance Programs

As we can see from example 2 the size of the maintenance program LPM is
substantially larger than the original program LP .

4.4.1 OWL (DLP) Maintenance Programs The structure of the rules
that are generated by translating OWL axioms into a logic program allows us
to observe that the rewriting of each OWL inclusion axiom creates the following
number of maintenance rules:

Incrementally Maintaining Materializations 15

|θ(φLP (C � D))| = 3
|θ(φLP (C1 � . . . � Cn � D))| = 2 ∗ n + 1
|θ(φLP (C � D1 � . . . �Dn))| = n ∗ |θ(φLP (C � Di))|
|θ(φLP (D1 � . . . �Dn � E))| = n ∗ |θ(φLP (Di � E))|
|θ(φLP (C � ∀R.D))| = |θ(φLP (∃R.C � D))| = 5
OWL object property transitivity is translated to five maintenance rules

by applying θ to φLP . All other DL property axioms are translated to three
maintenance rules by applying θ to φLP . θ is applied to all atomic classes and
properties in KBDLP

0 as well as the auxiliary classes that are created by the
structural transformation which is carried out during the preprocessing step.

4.4.2 RDF(S) Maintenance Programs Since the 12 static Datalog rules
for the single predicate-based axiomatization of RDF(S) (cf. Table 2) contain 19
body predicates, the application of θ leads to the generation of 60 rules, namely
19 insertion rules, 19 deletion rules, 12 re-derivation rules, 5 maintenance rules
for tNew , t+ and t−, as well as 5 further rules to differentiate between entailments
and assertions.

4.5 Evaluating Maintenance Programs

[29] show that the evaluation of the maintenance rules is a sound and complete
procedure for computing the differentials between two database states when
extensional update operations occur.

During the evaluation it is necessary to access the old state of a predicate.
Bottom-up approaches to evaluation therefore require that all intensional rela-
tions involved in the computation are completely materialized.

The maintenance rules for capturing the new database state contain negated
predicates to express the algebraic set difference operation. Hence, even though
the original rules are pure Datalog (without negation), a program with negation
is generated. The rewriting transformation keeps the property of stratifiability,
since newly introduced predicates do not occur in cycles with other negations.
Hence, it is guaranteed that predicates can be partitioned into strata such that
no two predicates in one stratum depend negatively on each other, i.e. predicates
only occur negatively in rules that define predicates of a higher stratum. The
evaluation can then proceed, as usual, stratum-by-stratum starting with the
extensional predicates themselves.

Example 3 (Evaluating Maintenance Programs). The direct links between mem-
bers of the Bach family in Figure 3 constitute the extension of Aedb, where we
abbreviate the names of each individual by the first letters of their forenames:

Aedb = {(j, h), (j, c), (h, jc1), (jc1, jm), (jm, mb), (mb, wf), (js, wf), (ja, js), (c, ja)}

Using the maintenance rewriting the materialization of A changes to ANew

as follows, if AIns = (js, jc2) is inserted and ADel = (js, wf) is deleted:

16 Raphael Volz, Steffen Staab, and Boris Motik

AIns
edb = {(jc, jc2)}

ADel
edb = {(js, wf)}

ANew
edb = Aedb ∪ AIns

edb \ ADel
edb

AIns = {(js, jc2), (ja, jc2), (c, jc2), (j, jc2)}
ADel = {(js, wf), (ja, wf), (c, wf), (j, wf)}
ARed = {(j, wf)}
ANew = (A \ ADel ∪ AIns ∪ ARed)

= A ∪ {(js, jc2), (ja, jc2), (c, jc2), (j, jc2)} \ {(js, wf), (ja, wf), (c, wf)}
A− = {(js, wf), (ja, wf), (c, wf)}
A+ = {(js, jc2), (ja, jc2), (c, jc2), (j, jc2)}

Since all maintenance rules of a given predicate have to be evaluated, an ax-
iomatization of RDF(S) based on a single ternary predicate leads to complete
re-computation in case of updates. We sketch an optimization for this case in
Section 6 which should result in more efficient evaluation for the single predicate
axiomatization.

5 Maintaining Changing Rules

This section presents the maintenance of a materialization if the definition of
rules changes, i.e. rules that define a predicate are added or removed in the source
program. We introduce two simple extensions to the rewriting-based approach
presented in the previous section. Firstly, the materialization of predicates has
to be maintained in the case of changes. Secondly, the maintenance programs
have to be maintained such that additional rewritings are introduced for new
rules and irrelevant rewritings are removed for deleted rules.

5.1 Approach

We illustrated in Section 3.2 that every change in the rule set might cause
changes in the extension of an intensional predicate P , with the consequence
that the materialization of intensional predicates has to be updated. However,
unlike in the case of changing extensions, both auxiliary predicates which capture
the differences which are used to update the materialization of some predicate
P ∈ Pidb, i.e. P+ and P− have empty extensions since no actual facts change.

Obviously, we can categorize the intensional predicates that are affected by a
change in rules into two sets: (I) predicates that are directly affected, i.e. occur
in the head of changed rules and (II) predicates that are indirectly affected, i.e.
by depending on directly affected predicates through the rules in the program.

Our solution uses the existing maintenance rewriting for facts to propa-
gate updates to the indirectly affected predicates. To achieve this, the mainte-
nance computation for directly affected predicates is integrated into the mainte-
nance program by redefining the auxiliary predicates that are used to propagate
changes between predicates, i.e. PNew, P Ins and PDel.

Incrementally Maintaining Materializations 17

5.2 Maintenance Rewriting

Let δ+(δ−) be the set of rules which are inserted (deleted) from the logic pro-
gram LP . The reader may recall from the previous section that the function
head : LP → Pidb maps a rule to its rule head, and the function rules : Pidb→LP
maps rule heads to rules.

Definition 2 (Directly affected predicate). An intensional predicate p ∈
Pidb is a directly affected predicate, if p ∈ {head(r)|r ∈ δ+ ∪ δ−}.

Generator Parameter Rewriting Result

Predicate

ϑ P ∈ Pidb {ϑIns
idb (P)} ∪ {ϑDel

idb (P)} ∪ {ϑNew
idb (P)}

ϑIns
idb P ∈ Pidb P Ins:-P New.

ϑDel
idb P ∈ Pidb P Del:-P.

ϑNew
idb P ∈ Pidb {ϑNew(r)|∀r ∈ rules(P)}

Rule

ϑNew H:-B1, . . . , Bn. HNew:-BNew
1 , . . . , BNew

n .

Table 5. Rewriting Functions ϑ

The rule structure of the maintenance program LPM is modified for all di-
rectly affected predicates. For these predicates all maintenance rules are substi-
tuted by maintenance rules generated using the ϑ rewriting function (cf. Table 5).
ϑ is instantiated for every directly affected predicate P and the following is done:

1. The existing rules defining PNew in the maintenance program LPM are
deleted;

2. New rules axiomatize PNew using the (new) rule set that defines P in the
updated original program. These rules are slightly adapted, such that refer-
ences to any predicate P are altered to PNew, by instantiating the following
rewriting pattern for all rules R ∈ rules(P):

P New:-RNew
1 , . . . , RNew

n .

The rewrite pattern simply states that the new state of the predicate P
follows directly from the combination of the new states of the predicates Ri

in the body of of all rules defining P in the changed source program.
3. All maintenance rules for calculating the insertions and deletions to P have to

be removed from the maintenance program and are replaced by the following
two static rules.

P Ins:-PNew.
PDel:-P.

18 Raphael Volz, Steffen Staab, and Boris Motik

The role of P Ins, PDel, PNew is exactly the same as in the rewriting for facts,
i.e. they propagate changes to dependent predicates. While P Ins propagates the
new state of a predicate as an insertion to all dependent predicates, PDel prop-
agates the old state of a predicate as a deletion to all dependent predicates.
Figure 4 shows how the information flow in the maintenance program changes
with respect to the rewriting of a rule H(x):-B(x). from the maintenance rewrit-
ing for fact changes (a) to the maintenance for rule changes (b). The arrows to
(from) nodes depict that the respective predicate possibly uses (is used by) some
other predicate in the maintenance program.

Fig. 4. Information Flow in Maintenance Programs: (a) Maintenance for Facts; (b)
Maintenance for Rules

5.3 Evaluating Maintenance Programs

The evaluation of maintenance programs is now carried out in three steps:

1. Update the maintenance rewriting LPM of LP to incorporate the set of rules
that are added (δ+) or removed (δ−).

2. Evaluate the maintenance program LPM and incrementally maintain all
materialized predicates.

3. Maintain the maintenance rewriting LPM by changing rewritings back to
the rewriting for facts.

Step 1. Step 1 is implemented by Algorithm 5.1. This algorithm has three func-
tions. Firstly, it replaces all maintenance rewritings for directly affected predi-
cates with the new maintenance rewritings. Secondly, it alters the source pro-
gram LP such that the set of updated rules is incorporated into LP . Thirdly, it
maintains auxiliary rewriting rules, viz. generates rules for previously unknown
intensional predicates and removes those rules if an intensional predicate no
longer occurs in the source program.

Incrementally Maintaining Materializations 19

Require:
δ+ Set of inserted rules
δ− Set of deleted rules
LPM Maintenance program

Ensure:
Updated maintenance program LPM

removeMR = ∅ // Collects maintenance rules to be removed
addMR = ∅ // Collects maintenance rules to be added
affectedPred = ∅ // Collects all affected predicates
// Add new rewriting rules for added rules
for all r ∈ (δ+ \ δ−) do

addMR = {θRed(r)}∪ addMR
p = head(r)
affectedPred = {p} ∪ affectedPred
// First rule defining a predicate ?
if p �∈ {head(r) | r ∈ LP} then

addMR = θ+
idb(p) ∪ θ−

idb(p)∪ addMR // Need new auxiliary predicates
end if
LP = LP ∪ r

end for
// Add new rewriting rules for deleted rules
for all r ∈ (δ− \ δ+) do

p = head(r)
affectedPred = p ∪ affectedPred
// Last rule defining a predicate ?
if rules(p) \ {r} = ∅ then

removeMR = θ+
idb(p) ∪ θ−

idb(p) ∪ θRed
idb (p)∪ removeMR

end if
LP = LP \ r

end for
// Replace rewriting rules for affected predicates
for all p ∈ affectedPred do

addMR = ϑNew
idb (p) ∪ ϑIns

idb (p) ∪ ϑDel
idb (p)∪ addMR

removeMR = θNew
idb (p) ∪ θIns

idb (p) ∪ θDel
idb (p)∪ removeMR

end for
LPM = (LPM ∪ addMR)\ removeMR

Algorithm 5.1: Updating Rules (Pre-Evaluation Algorithm)

Example 4 (Maintenance Rewritings for New Rule). Let us return to the main-
tenance program LPM established in Example 2 and consider that rule R3 is
inserted into LP = {R1, R2}, i.e. the new LP consists of the following rules after
the application of Algorithm 5.1:

(R1) ancestorOf(x, z):-ancestorOf(x, y),ancestorOf(y, z).
(R2) ancestorOf(x, z):-ancestorOfedb(x, y).
(R3) inDynasty(x, y):-ancestorOf(x, y).

20 Raphael Volz, Steffen Staab, and Boris Motik

Since δ+ = R3 and δ− = ∅ and none of the previously existing intensional
axioms is directly affected, the algorithm does not remove any rewriting rules
from the maintenance program LPM in this example. We have, however, to add
the new maintenance rules for the directly affected predicate inDynasty, which
we will abbreviate as I in the following. The algorithm augments LPM with the
rules generated by the following calls to rewriting generators (in this order):

θRed(R3) = IRed(x, y):-IDel(x, y),ancestorOfNew(x, y).
θ+

idb(I) = I+(x, y):-IIns(x, y),notI(x, y).
θ−idb(I) = I−(x, y):-IDel(x, y),notIIns(x, y),notIRed(x, y).
ϑNew(I) = INew(x, y):-ancestorOfNew(x, y).
ϑIns(I) = IIns(x, y):-INew(x, y).
ϑDel(I) = IDel(x, y):-I(x, y).

The new state of I is now directly derived from the new state of A, which is
calculated as part of the maintenance program. Hence, we can obtain the first
materialization I just by evaluating the maintenance program.

Step 2. Step 2 evaluates the maintenance program as presented in Section 4.

Require:
δ+ Set of inserted rules
δ− Set of deleted rules
LP Original logic program
LPM Maintenance program

Ensure:
Updated logic program LP
Updated maintenance program LPM

removeMR = ∅
addMR = ∅
affectedPred = ∅
for all r ∈ (δ+ \ δ−) do

affectedPred = head(r) ∪ affectedPred
end for
for all r ∈ (δ− \ δ+) do

p = head(r)
if rules(p) �= ∅ then

affectedPred = p ∪ affectedPred
end if

end for
for all p ∈ affectedPred do

removeMR = ϑNew
idb (p) ∪ ϑIns

idb (p) ∪ ϑDel
idb (p)∪ removeMR

addMR = θNew
idb (p) ∪ θIns

idb (p) ∪ θDel
idb (p)∪ addMR

end for
LPM = LPM ∪ addMR \ removeMR

Algorithm 5.2: Updating Rules (Post-Evaluation Algorithm)

Incrementally Maintaining Materializations 21

Step 3 Step 3 is implemented by Algorithm 5.2. It essentially only undoes our
special maintenance rewriting, i.e. it replaces the maintenance rewritings that
have been generated by Algorithm 5.1 for directly affected predicates with the
normal maintenance rewritings for facts.

Example 5 (Maintenance Rewritings for New Rule). Algorithm 5.2 would re-
move the following maintenance rules from the maintenance program LPM :

ϑNew(I) = INew(x, y):-ancestorOfNew(x, y).
ϑIns(I) = IIns(x, y):-INew(x, y).
ϑDel(I) = IDel(x, y):-I(x, y).
In parallel, the maintenance program would be extended with the rewritings

generated by the rewriting generators that create the maintenance rewriting for
facts (θNew

idb (I), θIns
idb (I) and θDel

idb (I)).

Since all maintenance rules for dealing with changes in rules are removed by
Algorithm 5.2, we obtain the same maintenance program as if we would have
completely regenerated the maintenance program for facts from the changed
source program.

6 Materializing RDF Rules

An alternative to using OWL TBox axioms to state that inDynasty is a sym-
metric property, is the usage of either one of the RDF-based rule languages (cf.
Section 2), e.g. Notation 3.

Notation 3 { ?x :inDynasty ?y. }
log:implies

{ ?y :inDynasty ?x. }.
Datalog T (x,inDynasty, y):-T (y,inDynasty, x).

Table 6. Datalog Translation of RDF Rule Languages

If an RDF rule system internally uses one single predicate within the rules,
however, our technique for incrementally maintaining the materialization in case
of changes is useless. The evaluation of the maintenance program then corre-
sponds to a total recomputation, since all rules defining this predicate have to
be evaluated.

In order to use our approach to materialization, more optimized data struc-
tures to represent an RDF graph have to be chosen, such that the part of the
knowledge base which takes part in the evaluation can be limited.

6.1 Selection-Based Optimization

We will briefly sketch a possible optimization, which we called selection-based
optimization [33]. The optimization is based on the idea to split the extension

22 Raphael Volz, Steffen Staab, and Boris Motik

of the RDF graph according to split points , which are given by constants that
occur at a certain argument position of a predicate. Useful split points can be
derived from the vocabulary of an ontology or an ontology language such as RDF
Schema. In case of arbitrary graph data, a useful split point can be frequently
occurring constants, which can be easily determined using counting. The choice
of a good split point, however, clearly depends on the application of the RDF
rule base.

We can transform a Datalog program into an equivalent program that incor-
porates split points, if all references to a predicate P (in queries, facts and rules)
where a split point occurs are replaced by appropriate split predicates.

In the following, we will assume that a split point is constituted by a constant
c that is used as the i-th argument in the predicate P . To generate split predi-
cates, we then split the extension of a predicate Pedb into several edb predicates
of the form P ci

edb(V ar1, V ar2, . . . , V ari−1, c, V ari+1, V arn) to store tuples based
on equal constant values c in their i-th component.

Hence, instead of using a single extensional predicate Pedb for representing
direct RDF assertions, the extensional database is split into several P ci

edb. Again,
we can differentiate between asserted and derived information by introducing
intensional predicates (views) for each component of the extension (i.e. rules
of the form P ci:-P ci

edb).The complete predicate P can still be represented by
means of an intensional predicate, which is axiomatized by a collection of rules
that unify the individual split predicates: P:-P ci .

Example 6. Returning to the triple based axiomatization (cf. Figure 2) of the N3
example, we can transform the program by introducing a split point T inDynasty2

for the inDynasty constant (when used as second argument in the ternary
predicate T):

– We use two extensional predicates: T Rest
edb , T inDynasty2

edb to store the extension
in two disjoint sets.

– We capture the intensional predicates and integrate the splits into a complete
extension of T and rewrite the example such that split predicates are used
instead of the full predicate:

T Rest(X, Y, Z) :- T Rest
edb (X, Y, Z).

T inDynasty2(X, Y, Z) :- T inDynasty2
edb (X, Y, Z).

T (X, Y, Z) :- T Rest(X, Y, Z).
T (X, Y, Z) :- T inDynasty2(X, Y, Z).
T inDynasty2(X, inDynasty, Y) :- T inDynasty2(Y, inDynasty, X).

Any other rule that is inserted into the RDF rule base can be transformed
into a set of rules, which use the available split predicates.

However, the maintenance of a materialized predicate T inDynasty2 can now be
carried out by ignoring all non-relevant rules for T . Hence, the whole extension of
T can be updated via the insert and delete maintenance rules that were presented
in the previous sections, i.e. without using the complete database.

Incrementally Maintaining Materializations 23

7 Implementation

The incremental maintenance of materializations is implemented in the KAON
Datalog engine14, which handles materialization on a per predicate, i.e. per class
or property, level. In case of the materialization of a predicate all changes to facts
relevant for the predicate and the rule set defining a predicate are monitored.

The maintenance process is carried out as follows. When a program is desig-
nated for materialization, all maintenance rules are generated, the maintenance
program itself is evaluated and the extension of all predicates P designated for
materialization is stored explicitly. The maintenance program is then used for
evaluation instead of the original program which is kept as auxiliary informa-
tion to track changes to rules. All rules of the original program which define
non-materialized predicates are added to the maintenance program.

Updates to facts are handled in a transactional manner. All individual changes
are put into the appropriate pIns

edb and pDel
edb predicates. Committing the transac-

tion automatically triggers the evaluation of the maintenance rules. After this
evaluation, the extensions of all materialized predicates P are updated by adding
the extension of P+

idb and removing the extension of P−
idb. Similarly, the exten-

sion of all extensional predicates Pedb is updated by adding P Ins and removing
PDel. As a last step, the extension of P Ins and all other auxiliary predicates are
cleared for a new evaluation.

Changes in rules are carried out in the three phase process described in Sec-
tion 5: First, the new maintenance rules of rule change are generated. Then,
the maintenance program is evaluated and the extensions of materialized pred-
icates are updated as described for the change of facts. As the last step, the
maintenance rules for rule change are replaced with maintenance rules for fact
changes.

8 Evaluation

This section reports on the evaluation of our approach which was carried out
with various synthetically generated OWL ontologies that are expressible in the
DLP fragment.

8.1 Evaluation Setting

Test Assumptions. The evaluation has been carried out with changing OWL
ontologies that are operationalized in logic databases using the DLP approach.
It is assumed that all predicates are materialized. We assume that an inference
engine builds its knowledge base by aggregating data from several web sources.
Therefore bulk updates will be predominant.

14 The engine is part of the open source KAON tool suite, which can be freely down-
loaded from http://kaon.semanticweb.org/.

24 Raphael Volz, Steffen Staab, and Boris Motik

Test Procedure. Each test is characterized by a certain ontology structure and
a class whose extension is read. The ontology structure has been generated for
different input parameters, resulting in ontologies of different sizes. The average
of five such invocations has been taken as the performance measure for each test.

We obtain six measures: (a) the time of query processing without material-
ization, (b) the time required to set up the materialization and the maintenance
program, (c) the time required to perform maintenance when rules are added,
(d) rules are removed, (e) facts are added, and (f) facts are removed. Finally,
(g) assesses the time of query processing with materialization.

Test Platform. We performed the tests on a laptop with Pentium IV Mobile
processor running at 2 GHz, 512 MB of RAM using the Windows XP operating
system. The implementation itself is written in Java and executed using Sun’s
JDK version 1.4.1 01.

8.2 Evaluation Scenarios

First we give an overview of the types of tests we conducted. In the following we
use D to denote the depth of the class hierarchy, NS to denote the number of
sub classes at each level in the hierarchy, NI to denote the number of instances
per class and P to denote the number of properties.

To test changes in facts, we add and remove a random percentage Change
of the facts. For rules, we add and remove a random rule. This is due to the
limitation of the underlying engine, which currently does not allow to alter rules
in a bulk manner. The test was performed for different depths of the taxonomy
D = 3, 4, 5 while the number of sub classes and the number of instances was
not altered (NS = 5; NI = 5). Test 2 and 3 made use of properties. Here, every
class had five properties, which are instantiated for every third instance of the
class (NI = 5). We carried out each test using varying Change ratios of 10% and
15% of the facts.

Test 1: Taxonomy Extended taxonomies, e.g. WordNet, currently constitute a
large portion of the ontologies that are in use. Our goal with this test is to see
how the very basic task of taking the taxonomy into account when retrieving the
extension of a class is improved. The taxonomy is constituted by a symmetric
tree of classes. We did not make use of properties, hence P = 0. The test query
involved computing the extension of one of the concepts on the first level of the
class hierarchy. This is a realistic query in systems where taxonomies are used
for navigation in document collections. Here, navigation typically starts with
top-level classes and the set of documents is displayed as the class extension.

Test 2: Database-like The goal of this test was to see how ontologies with larger
number of properties are handled. Our goal was to answer a simple conjunctive
query on top of this ontology. The DL-like query is c1 � ∃p0.c12.

Incrementally Maintaining Materializations 25

Test 3: DL-like This test shows how materialization performs in DL-like on-
tologies, which contain simple class definitions. Each class in the class tree is
defined using the following axiom: ci � ∃pk.ci−1 � c (where ci denotes i-th child
of concept c). The query retrieves the extension of some random class in the
first-level of the taxonomy.

Evaluation Results

1

10

100

1000

10000

100000

1000000

O
rig

in
al

Q
ue

ry

S
et

up
M

ai
nt

en
an

ce

R
em

ov
e

R
ul
es

A
dd

R
ul
es

R
em

ov
e

Fac
ts

A
dd

Fac
ts

Q
ue

ry
O
n

M
at

er
ia
liz

at
io
n

Action

T
im

e
(m

s
) Taxonomy Depth 3

DL-Like Ontology Depth 3

DB-Like Conjunctive Query Depth 3

Taxonomy Depth 4

DL-Like Ontology Depth 4

DB-Like Conjunctive Query Depth 4

Taxonomy Depth 5

DB-Like Conjunctive Query Depth 5

Fig. 5. Evaluation Results (Average Values for 10% change)

8.3 Results

Figure 5 depicts the average time15 for querying an ontology without using ma-
terialization, setting up the materialization and cost of maintenance for different
types of changes (adding and removing rules and facts). Finally, the time for an-
swering the same query using the materialization is depicted. The exact results
of the evaluation can be found in the appendix.

As we can see in the appendix, maintenance costs do not vary significantly
with the quantity of updates, therefore Figure 5 only shows the results for 10%

15 in milliseconds on a logarithmic scale

26 Raphael Volz, Steffen Staab, and Boris Motik

change. All costs are directly related to the size of the ontologies. The perfor-
mance behavior between the taxonomy and DB-like ontologies do also not alter
significantly. However, more complex rules as they are constituted by DL-like
ontologies are always more expensive to evaluate, therefore setup costs and the
cost of evaluating the maintenance rules is also higher.

We want to stress that we measured the performance of concrete tools. Al-
though algorithms implemented by a system are certainly important, the overall
performance of a system is influenced by many other factors as well, such the
quality of the implementation or the language. It is virtually impossible to ex-
clude these factors from the performance measurement. For example, our Dat-
alog engine ran out of memory with the DL-like ontology where the taxonomic
depth was five, viz. the set of rules was generated from 3950 class and 19750
property definitions, while the underlying knowledge base contained 19750 class
instantiations and 32915 property instantiations. The other ontologies of taxo-
nomic depth 5 were still handled by the engine, but due to inefficient memory
management, most of the time was not actually used for query processing but
for memory management (swapping), such that the query on the materialization
in this only showed little improvement.

8.4 Discussion

The different costs of each step in the maintenance procedure are always higher
than the costs of evaluating a single query. The question whether or not to
materialize is therefore determined by the application and the issue whether the
system can handle its typical workload, e.g. can it handle the intended number
of users if answering a single query takes almost 3 seconds ?

With materialization the cost of accessing the materialized predicates can be
neglected. However, the time for the evaluation of the maintenance rules can be
a significant bottleneck for a system especially for large knowledge-bases. For
example, in one of our test runs it took almost 16 minutes to recompute the
materialization after fact changes for the DB-like test with taxonomic depth 5.
Fortunately, materialization can be carried out in parallel to answering queries
on top of the existing materialization.

In consequence, users will have to operate on stale copies of data. Staleness
of data cannot be avoided in distributed scenarios like the Web in the first place,
and existing experiences, e.g. with outdated page ranks of a web pages in Google,
show that the quality of query answering is still good enough, if data is updated
occasionally.

9 Related Work

We can find related work in two areas: Firstly, incremental maintenance of ma-
terialized views in deductive databases. Secondly, truth maintenance systems in
the Artificial Intelligence context.

Incrementally Maintaining Materializations 27

9.1 Incremental Maintenance of Materialized Views

Several algorithms have been devised for the incremental maintenance of mate-
rialized views in deductive databases. All of these approaches do not consider
changes in the set of rules and differ in the techniques used to cope with changes
in facts.

In order to cope with changing facts, [1, 17] effectively compute the Herbrand
model of a stratified database after a database update. The proposed solution
of [1] uses sets of positive and negative dependencies that are maintained for all
derived facts. This leads to low space efficiency and high cost for maintaining
the dependencies. [17] derives rules (so-called meta-programs) to compute the
difference between consecutive database states for a stratified Datalog program.
Some of the generated rules are not safe, making it impossible to implement the
rules in Datalog engines. Additionally, duplicate derivations are not discarded
in the algorithm.

[11] presents the Delete and Re-Derive (DRed) algorithm, which is a pro-
cedural approach to view maintenance in Datalog with stratified negation. We
will follow their principal approach for the computation of changes, in fact their
procedural algorithm has been altered to a declarative algorithm [30] which we
will extend.

The Propagation Filtration algorithm of [12] is similar to the DRed algo-
rithm, except that changes are propagated on a ’predicate by predicate’ basis.
Hence, it computes changes in one intensional predicate due to changes in one
extensional predicate, and loops over all derived and extensional predicates to
complete the maintenance procedure. In each step of the loop, the delete, re-
derive and insert steps are executed. The algorithm ends up fragmenting com-
putation and rederiving changed and deleted facts over and over again, i.e. it is
less efficient than the DRed algorithm.

9.2 Truth Maintenance Systems (TMS)

Truth maintenance 16 is an area of AI concerned with revising sets of beliefs and
maintaining the truth in a reasoning system when new information alters existing
information. A representation of beliefs and their dependencies is used to achieve
the retraction of beliefs and to identify contradictions. For example, justification-
based TMS [9] uses a graph data structure where nodes are augmented with two
fields indicating their belief status and supporting justification. When the belief
status is changed, dependencies are propagated through the graph.

Making TMSs more efficient was a cottage industry in the late 1980s, with
most of the attention focused on the Assumption-based TMS (ATMS) [6]. The
primary advantage of the ATMS is its ability to rapidly switch among many
different contexts, which allows a simpler propagation of fact withdrawals, but
comes at the cost of an exponential node-label updating process when facts
are added. The main disadvantage of TMS is that the set of justifications (and

16 also called belief revision or reason maintenance.

28 Raphael Volz, Steffen Staab, and Boris Motik

nodes) grows monotonically as it is not allowed to retract a justification, but
only disable information. The fact that the set of assumptions is always in flux
introduces most of the complexity in the TMS algorithms. More recent work
(e.g. [23]) primarily tried to reduce the cost for incremental updates.

10 Conclusion

10.1 Contribution

We presented a technique for the incremental maintenance of materialized Dat-
alog programs. Our technique can therefore be applied for ontology languages
which can be axiomatized in Datalog, i.e. RDF Schema and OWL DLP17 as well
as the Datalog-fragments of Semantic Web rule languages.

We contributed a novel solution to the challenge of updating a materialization
incrementally when the rules of a Datalog program change, which has, to our
best knowledge, not been addressed in the deductive database context18.

In order to cope with changing rules, we applied a declarative, rewriting-based
algorithm for the incremental maintenance of views [30] and introduced two
novel techniques: Firstly, we extended the rewriting to deal with changing rules.
Secondly, we introduced two algorithms for the maintenance of the rewritten
rules when the underlying source rules change.

Our solution has been completely implemented and evaluated. We reported
on our prototypical implementation and presented the results of our empirical
analysis of the costs of incremental maintenance, which shows the feasibility of
our solution.

The techniques proposed in this article are not specific to any ontology lan-
guage, but can generally be used for the incremental maintenance of materialized
Datalog programs. Due to this generic solution, future developments, e.g. for the
rule layer of the Semantic Web, are likely to benefit from our technique as well.

Materialization is certainly not a panacea to all tractability problems. For
example, one drawback is that it trades off required inferencing time against
storage space and access time. In spite of this restriction, which remains to be
assessed by more practical experience and cost models that are derived from
those experiences, we conjecture that materialization as explained in this article
will help to progress the Semantic Web and to build the large Semantic Web
engines of tomorrow.

10.2 Further Uses

We can reuse our approach for incremental maintenance of a materialization in
several other contexts:
17 We cannot maintain function symbols other than constants, therefore our approach

can not be used for L3.
18 [10] address the maintenance of views after redefinition for the relational data model.

Incrementally Maintaining Materializations 29

– Integrity Constraint Checking: Incremental maintenance can also be used
as a fundamental technique in an implementation of integrity constraints
on Semantic Web data, i.e. we can incrementally check the validity of a
constraint by maintaining an empty view.

– Continuous Queries: [18] The auxiliary maintenance predicates P+ and
P− can be used as a basis for implementing continuous queries or pub-
lish/subscribe systems, which are used to monitor a flow of data. This mon-
itoring can use the extensions of P+ and P− as a basis for notification
messages that are sent to the subscribers.

– Interoperability with systems of limited inferencing capabilities: We can use
materialization to explicate data for clients that cannot entail information on
their own. In particular, we can store materializations in relational databases
which are agnostic about the semantics of the data but may be used for fast
query answering.

References

[1] K. Apt and J.-M. Pugin. Maintenance of stratified databases viewed as belief
revision system. In Proc. of the 6th Symposium on Principles of Database Systems
(PODS), pages 136–145, San Diego, CA, USA, March 1987.

[2] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A reasonable on-
tology editor for the Semantic Web. In Proceedings of KI2001, Joint Ger-
man/Austrian conference on Artificial Intelligence, volume 2174 of LNAI, pages
396–408. Springer, 2001.

[3] S. Bechhofer, R. Volz, and P. Lord. Cooking the Semantic Web with the OWL
API. In [10], pages 659–675, 2003.

[4] T. Berners-Lee. CWM - closed world machine. Internet:
http://www.w3.org/2000/10/ swap/doc/cwm.html, 2000.

[5] D. Brickley and R. V. Guha. RDF vocabulary description language 1.0: RDF
Schema. W3C Working Draft, 10 October 2003, October 2003. Internet:
http://www.w3.org/TR/2003/WD-rdf-schema-20031010/.

[6] J. de Kleer. An assumption-based truth maintenance system. Artificial Intelli-
gence, 28:127–162, 1986.

[7] S. Decker, D. Brickley, J. Saarela, and J. Angele. A query and inference service
for RDF. In QL98 - Query Languages Workshop, December 1998.

[8] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology based
Access to Distributed and Semi-structured Information. In Database Semantics:
Semantic Issues in Multimedia Systems., pages 351–369. Kluwer Academic, 1999.

[9] J. Doyle. A truth maintenance system. In B. Webber and N. J. Nilsson, editors,
Readings in Artifcial Intelligence, pages 496–516. Morgan Kaufmann, Los Altos,
California, 1981.

[10] A. Gupta, I. S. Mumick, and K. A. Ross. Adapting materialized views after
redefinitions. In M. J. Carey and D. A. Schneider, editors, Proceedings of the
1995 ACM SIGMOD International Conference on Management of Data, San Jose,
California, May 22-25, 1995, pages 211–222. ACM Press, 1995.

[11] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining
views incrementally. In Proceedings of the 1993 ACM SIGMOD international
conference on Management of data, pages 157–166. ACM Press, 1993.

30 Raphael Volz, Steffen Staab, and Boris Motik

[12] J. Harrison and S. Dietrich. Maintenance of materialized views in a deductive
database: An update propagation approach. In Workshop on Deductive Databases
held in conjunction with the Joint International Conference and Symposium on
Logic Programming (JICSLP), pages 56–65, Washington, D.C., November 1992.

[13] P. Hayes. RDF Semantics. W3C Working Draft, 10 October 2003, October 2003.
Internet: http://www.w3.org/TR/rdf-mt/.

[14] J. Heflin, J. Hendler, and S. Luke. SHOE: A knowledge representation language
for internet applications. Technical Report CS-TR-4078, Institute for Advanced
Computer Studies, University of Maryland, 1999.

[15] M. Jarke, R. Gallersdoerfer, M. A. Jeusfeld, and M. Staudt. ConceptBase - A
Deductive Object Base for Meta Data Management. JIIS, 4(2):167–192, 1995.

[16] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and
frame-based languages. Journal of the ACM, 42:741–843, 1995.

[17] V. Kuchenhoff. On the efficient computation of the difference betwen consecutive
database states. In C. Delobel, M. Kifer, and Y. Masunaga, editors, Proc. of 2nd
Int. Conf. on Deductive and Object-Oriented Databases, volume 566 of Lecture
Notes in Computer Science (LNCS), pages 478–502, Munich, Germany, December
1991. Springer.

[18] L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven
information delivery. IEEE TKDE, 11(4), 1999.

[19] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. Managing multiple
ontologies and ontology evolution in ontologging. In Proc. of IIP-2002, Montreal,
Canada, 08 2002.

[20] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. An infrastructure for
searching, reusing and evolving distributed ontologies. In Proc. of WWW-2003,
Budapest, Hungary, 05 2003.

[21] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.
Technical report, World Wide Web Consortium (W3C), August 2003. Internet:
http://www.w3.org/TR/owl-features/.

[22] B. Motik, A. Maedche, and R. Volz. A conceptual modeling approach for
semantics-driven enterprise applications. In Proc. 1st Int’l Conf. on Ontologies,
Databases and Application of Semantics (ODBASE-2002), October 2002.

[23] P. P. Nayak and B. C. Williams. Fast context switching in real-time propositional
reasoning. In T. Senator and B. Buchanan, editors, Proceedings of the Fourteenth
National Conference on Artificial Intelligence and the Ninth Innovative Applica-
tions of Artificial Intelligence Conference, pages 50–56, Menlo Park, California,
1998. AAAI Press.

[24] R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. The CORAL
Deductive System. VLDB Journal: Very Large Data Bases, 3(2):161–210, 1994.

[25] J. De Roo. Euler proof mechanism. Internet: http://www.agfa.com/w3c/euler/,
2002.

[26] K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database
engine. In R. T. Snodgrass and M. Winslett, editors, Proc. of the 1994 ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD’94), pages 442–453, 1994.

[27] M. Sintek and S. Decker. TRIPLE - an RDF query, inference and transformation
language. In Deductive Databases and Knowledge Management (DDLP), 2001.

[28] P. Spyns, D. Oberle, R. Volz, J. Zheng, M. Jarrar, Y. Sure, R. Studer, and
R. Meersman. OntoWeb - A Semantic Web community portal. In Proc. ofProc.
Fourth International Conference on Practical Aspects of Knowledge Management
(PAKM), pages 189–200, Vienna, Austria, 2002.

Incrementally Maintaining Materializations 31

[29] M. Staudt and M. Jarke. Incremental maintenance of externally materialized
views. Technical Report AIB-95-13, RWTH Aachen, 1995.

[30] M. Staudt and M. Jarke. Incremental maintenance of externally materialized
views. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda,
editors, VLDB’96, Proceedings of 22th International Conference on Very Large
Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 75–86. Morgan
Kaufmann, 1996.

[31] R. Studer, Y. Sure, and R. Volz. Managing user focused access to distributed
knowledge. Journal of Universal Computer Science (J.UCS), 8(6):662–672, 2002.

[32] R. Volz, S. Staab, and B. Motik. Incremental maintenance of dynamic datalog
programs. In [?], 2003.

[33] R. Volz, S. Staab, and B. Motik. Incremental Maintenance of Materialized On-
tologies. In R. Meersman, Z. Tari, D. C. Schmidt, B. Kraemer, M. van Steen,
S. Vinoski, R. King, M. Orlowska, R. Studer, E. Bertino, and D. McLeod, editors,
Proc. of CoopIS/DOA/ODBASE 2003, volume 2888 of LNCS, pages 707–724,
Sicily, 2003.

[34] Raphael Volz. Web Ontology Reasoning in Logic Databases. PhD thesis, Uni-
versitaet Fridericiana zu Karlsruhe (TH), http://www.ubka.uni-karlsruhe.de/cgi-
bin/psview?document=20042, February 2004.

A Appendix

The reader may note that OoM is an acronym for ”Out Of Memory”, i.e. the
prototypical implementation could not deal with the problem size.

Original Query D NS NI P Change Orig Average Minimum Maximum
Taxonomy 3 5 5 0 10 197 80 491
Taxonomy 4 5 5 0 10 373 290 571
Taxonomy 5 5 5 0 10 1767 1482 2463
Taxonomy 3 5 5 0 15 147 60 311
Taxonomy 4 5 5 0 15 378 280 581
Taxonomy 5 5 5 0 15 1765 1373 2464

DL-Like Ontology 3 5 5 5 10 310 170 640
DL-Like Ontology 4 5 5 5 10 2764 2523 3475
DL-Like Ontology 5 5 5 5 10 OoM OoM OoM
DL-Like Ontology 3 5 5 5 15 263 150 511
DL-Like Ontology 4 5 5 5 15 2774 2523 3515
DL-Like Ontology 5 5 5 5 15 OoM OoM OoM

DB-Like Conjunctive Query 3 5 5 5 10 152 70 341
DB-Like Conjunctive Query 4 5 5 5 10 482 310 701
DB-Like Conjunctive Query 5 5 5 5 10 2165 19963 2403
DB-Like Conjunctive Query 3 5 5 5 15 172 70 430
DB-Like Conjunctive Query 4 5 5 5 15 425 301 701
DB-Like Conjunctive Query 5 5 5 5 15 2078 1722 2374

32 Raphael Volz, Steffen Staab, and Boris Motik

Setup Maintenance D NS NI P Change Average Minimum Maximum

Taxonomy 3 5 5 0 10 305 200 441
Taxonomy 4 5 5 0 10 1347 1212 1622
Taxonomy 5 5 5 0 10 18391 16694 19318
Taxonomy 3 5 5 0 15 245 141 251
Taxonomy 4 5 5 0 15 1382 1232 1683
Taxonomy 5 5 5 0 15 18293 16714 19017

DL-Like Ontology 3 5 5 5 10 355 230 531
DL-Like Ontology 4 5 5 5 10 3715 2894 4747
DL-Like Ontology 5 5 5 5 10 OoM OoM OoM
DL-Like Ontology 3 5 5 5 15 368 241 571
DL-Like Ontology 4 5 5 5 15 3720 2894 4757
DL-Like Ontology 5 5 5 5 15 OoM OoM OoM

DB-Like Conjunctive Query 3 5 5 5 10 265 151 431
DB-Like Conjunctive Query 4 5 5 5 10 1464 1322 1663
DB-Like Conjunctive Query 5 5 5 5 10 18536 16935 19999
DB-Like Conjunctive Query 3 5 5 5 15 272 160 440
DB-Like Conjunctive Query 4 5 5 5 15 1467 1352 1652
DB-Like Conjunctive Query 5 5 5 5 15 18536 16905 20019

Removing Rules D NS NI P Change Average Minimum Maximum

Taxonomy 3 5 5 0 10 1386 1292 1592
Taxonomy 4 5 5 0 10 7581 7291 8352
Taxonomy 5 5 5 0 10 494726 227747 717452
Taxonomy 3 5 5 0 15 1452 1292 1772
Taxonomy 4 5 5 0 15 7615 7330 8372
Taxonomy 5 5 5 0 15 273874 189933 386005

DL-Like Ontology 3 5 5 5 10 2979 2864 3195
DL-Like Ontology 4 5 5 5 10 52613 47128 65214
DL-Like Ontology 5 5 5 5 10 OoM OoM OoM
DL-Like Ontology 3 5 5 5 15 33128 3055 3555
DL-Like Ontology 4 5 5 5 15 61979 50944 66395
DL-Like Ontology 5 5 5 5 15 OoM OoM OoM

DB-Like Conjunctive Query 3 5 5 5 10 1492 1382 1722
DB-Like Conjunctive Query 4 5 5 5 10 8011 7281 8732
DB-Like Conjunctive Query 5 5 5 5 10 517994 284389 723009
DB-Like Conjunctive Query 3 5 5 5 15 1557 1422 1783
DB-Like Conjunctive Query 4 5 5 5 15 8112 7822 8723
DB-Like Conjunctive Query 5 5 5 5 15 507760 132901 709009

Incrementally Maintaining Materializations 33

Removing Facts D NS NI P Change Average Minimum Maximum

Taxonomy 3 5 5 0 10 1302 1282 1332
Taxonomy 4 5 5 0 10 7328 7281 7361
Taxonomy 5 5 5 0 10 631956 487551 759261
Taxonomy 3 5 5 0 15 1301 1291 1312
Taxonomy 4 5 5 0 15 7350 7340 7371
Taxonomy 5 5 5 0 15 542294 381628 650265

DL-Like Ontology 3 5 5 5 10 3071 2974 3184
DL-Like Ontology 4 5 5 5 10 56754 56371 57002
DL-Like Ontology 5 5 5 5 10 OoM OoM OoM
DL-Like Ontology 3 5 5 5 15 3242 3125 3355
DL-Like Ontology 4 5 5 5 15 58339 58104 58655
DL-Like Ontology 5 5 5 5 15 OoM OoM OoM

DB-Like Conjunctive Query 3 5 5 5 10 1402 1392 1412
DB-Like Conjunctive Query 4 5 5 5 10 7991 7952 8022
DB-Like Conjunctive Query 5 5 5 5 10 537931 299260 787843
DB-Like Conjunctive Query 3 5 5 5 15 1409 1382 1422
DB-Like Conjunctive Query 4 5 5 5 15 7876 7841 7901
DB-Like Conjunctive Query 5 5 5 5 15 424565 292671 482925

Adding Rules D NS NI P Change Average Minimum Maximum

Taxonomy 3 5 5 0 10 1317 1252 1463
Taxonomy 4 5 5 0 10 7265 7240 7290
Taxonomy 5 5 5 0 10 559407 393666 706696
Taxonomy 3 5 5 0 15 1286 1251 1332
Taxonomy 4 5 5 0 15 7308 7291 7331
Taxonomy 5 5 5 0 15 464588 247826 611980

DL-Like Ontology 3 5 5 5 10 3009 2834 3345
DL-Like Ontology 4 5 5 5 10 51864 47047 65444
DL-Like Ontology 5 5 5 5 10 OoM OoM OoM
DL-Like Ontology 3 5 5 5 15 3307 2884 3565
DL-Like Ontology 4 5 5 5 15 61283 47528 67037
DL-Like Ontology 5 5 5 5 15 OoM OoM OoM

DB-Like Conjunctive Query 3 5 5 5 10 1469 1392 1662
DB-Like Conjunctive Query 4 5 5 5 10 8051 7801 8523
DB-Like Conjunctive Query 5 5 5 5 10 400638 150226 541619
DB-Like Conjunctive Query 3 5 5 5 15 1462 1422 1552
DB-Like Conjunctive Query 4 5 5 5 15 7936 7902 7981
DB-Like Conjunctive Query 5 5 5 5 15 484394 141163 691164

34 Raphael Volz, Steffen Staab, and Boris Motik

Adding Facts D NS NI P Change Average Minimum Maximum

Taxonomy 3 5 5 0 10 1284 1262 1312
Taxonomy 4 5 5 0 10 7310 7270 7380
Taxonomy 5 5 5 0 10 649123 522761 781173
Taxonomy 3 5 5 0 15 1367 1282 1612
Taxonomy 4 5 5 0 15 7310 7271 7350
Taxonomy 5 5 5 0 15 648495 576319 756978

DL-Like Ontology 3 5 5 5 10 3620 3565 3685
DL-Like Ontology 4 5 5 5 10 136128 134463 137928
DL-Like Ontology 5 5 5 5 10 OoM OoM OoM
DL-Like Ontology 3 5 5 5 15 3790 3725 3895
DL-Like Ontology 4 5 5 5 15 90277 89940 90910
DL-Like Ontology 5 5 5 5 15 OoM OoM OoM

DB-Like Conjunctive Query 3 5 5 5 10 1399 1392 1402
DB-Like Conjunctive Query 4 5 5 5 10 7931 7761 8012
DB-Like Conjunctive Query 5 5 5 5 10 714216 460882 878814
DB-Like Conjunctive Query 3 5 5 5 15 1434 1412 1452
DB-Like Conjunctive Query 4 5 5 5 15 8011 7891 8262
DB-Like Conjunctive Query 5 5 5 5 15 763873 482964 955724

Query on Materialization D NS NI P Change

Taxonomy 3 5 5 0 10 0
Taxonomy 4 5 5 0 10 0
Taxonomy 5 5 5 0 10 1331
Taxonomy 3 5 5 0 15 0
Taxonomy 4 5 5 0 15 0
Taxonomy 5 5 5 0 15 1252

DL-Like Ontology 3 5 5 5 10 10
DL-Like Ontology 4 5 5 5 10 0
DL-Like Ontology 5 5 5 5 10 OoM
DL-Like Ontology 3 5 5 5 15 0
DL-Like Ontology 4 5 5 5 15 0
DL-Like Ontology 5 5 5 5 15 OoM

DB-Like Conjunctive Query 3 5 5 5 10 0
DB-Like Conjunctive Query 4 5 5 5 10 0
DB-Like Conjunctive Query 5 5 5 5 10 1633
DB-Like Conjunctive Query 3 5 5 5 15 0
DB-Like Conjunctive Query 4 5 5 5 15 0
DB-Like Conjunctive Query 5 5 5 5 15 1282

Ontology Translation on the Semantic Web�

Dejing Dou, Drew McDermott, and Peishen Qi

Yale Computer Science Department
New Haven, CT 06520, USA

{dejing.dou,drew.mcdermott,peishen.qi}@yale.edu

Abstract. Ontologies are a crucial tool for formally specifying the vo-
cabulary and relationship of concepts used on the Semantic Web. In order
to share information, agents that use different vocabularies must be able
to translate data from one ontological framework to another. Ontology
translation is required when translating datasets, generating ontology
extensions, and querying through different ontologies. OntoMerge, an
online system for ontology merging and automated reasoning, can im-
plement ontology translation with inputs and outputs in OWL or other
web languages. Ontology translation can be thought of in terms of formal
inference in a merged ontology. The merge of two related ontologies is
obtained by taking the union of the concepts and the axioms defining
them, and then adding bridging axioms that relate their concepts. The
resulting merged ontology then serves as an inferential medium within
which translation can occur. Our internal representation, Web-PDDL,
is a strong typed first-order logic language for web application. Using a
uniform notation for all problems allows us to factor out syntactic and
semantic translation problems, and focus on the latter. Syntactic trans-
lation is done by an automatic translator between Web-PDDL and OWL
or other web languages. Semantic translation is implemented using an
inference engine (OntoEngine) which processes assertions and queries in
Web-PDDL syntax, running in either a data-driven (forward chaining)
or demand-driven (backward chaining) way.

1 Introduction

One major goal of the Semantic Web is that web-based agents should process
and “understand” data rather than merely display them as at present [24]. On-
tologies, which are defined as the formal specification of a vocabulary of concepts
and axioms relating them, are seen playing a key role in describing the “seman-
tics” of the data. Using ontologies, web-based agents can treat web documents
as sets of assertions, and, in particular, draw inferences from them.1

� This research was supported by the DARPA DAML program. This is an extended
version of the paper presented in ODBASE2003 [29].

1 We use scare quotes for “semantic” and “understand” because many people use the
former term without knowing what it means, and no one knows what the latter term
means. We will avoid the word “understand” wherever possible, but “semantic” in
the recent sense of “seeming to reveal a grasp of the meaning of the terms occurring
in,” as in “semantic translation,” seems unavoidable.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics II, LNCS 3360, pp. 35–57, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

36 Dejing Dou, Drew McDermott, and Peishen Qi

More and more ontologies are being developed [4] as formal underpinnings
for RDF-based data. An obvious desideratum of this movement is that two on-
tologies should not cover the same area; instead, those interested in formalizing
descriptions in that area should agree on a standard set of concepts. However,
this goal cannot always be met, for a variety of reasons. Some standard vocab-
ularies arise in different parts of the world or among different linguistic com-
munities, and attain popularity before their overlap is noticed. Even more likely
is that two vocabularies will partially overlap, usually because what is central
to one is peripheral to the other. For instance, a vocabulary devised by glove
manufacturers will have something to say about the parts of the hand and how
they mesh with the parts of gloves. A vocabulary devised by orthopedic surgeons
will also talk about the parts of the hand, but in very different ways, including,
obviously, going into much more detail.

These vocabulary differences make life difficult for agents on the Semantic
Web. It is much simpler to program two agents to communicate if they use
the same vocabulary and the terms have same meaning or interpretation. But
in cases where their vocabularies differ, we must resort to ontology translation
to allow them to communicate. This paper describes our contribution to the
solution of this problem.

Our focus is on translation between languages that use the same syntax but
have different vocabularies. We will have little to say about eliminating syntactic
differences, and instead will generally assume that the facts or queries to be
translated will be in the same logical notation after translation as before; only
the vocabulary will change. Syntactic translation is not always trivial, but we
will assume it is solved.

1.1 The Differences Between Ontologies on Similar Domains

The kinds of semantic differences between ontologies are innumerable, and rarely
correspond to simple correspondences between symbols in one and symbols in
the other, as we will discuss in section 1.2. For example, one genealogy ontology
might use two properties — firstname and lastname — to represent a person’s
name, where another might use only one property, fullname.

Some more subtle examples arise in translation between two bibliographical
ontologies developed at Yale [18] and CMU [3].2 While they are both obviously
derived from the Bibtex terminology, different decisions were made when ontol-
ogy experts developed them.

EXAMPLE 1.1.1. Both ontologies have a class called Article. In the yale bib
ontology, Article is a class which is disjoint with other classes such as Inproceedings
and Incollection. Therefore, in the yale bib ontology, Article only includes those
articles which were published in a journal. But in the cmu bib ontology, Article

2 These are “toy” ontologies developed as exercises to help populate the DARPA
DAML ontology library [4]. They are much simpler than real-world ontologies would
be. Their very simplicity helps reveal the phenomena we are after.

Ontology Translation on the Semantic Web 37

includes all articles which were published in a journal, proceedings or collection.
There are no Inproceedings and Incollection classes in the cmu bib ontology.

Complicated semantic differences can be caused by different understandings
about similar concepts. Even if the concepts from two ontologies share the same
class or property name, it is still possible that they have quite different meanings.
The following example is about the booktitle property in the yale bib ontology
and cmu bib ontology.

EXAMPLE 1.1.2. In the cmu bib ontology, booktitle’s domain is the Book
class and its range is String. A booktitle relationship means that a Book has some
string as its title. In the yale bib ontology, booktitle’s domain is Publication and
its range is Literal, which can be taken to be the same class as String. However,
yale bib’s booktitle domain is Publication. The assertion that publication P has
booktitle S means that P was published in a conference proceedings or anthology,
and that it is this proceedings or collection that has S as its title.

Another reason for complicated semantic differences is that they can be in-
herited from those between basic concepts, such as time, space etc.

EXAMPLE 1.1.3. There are several ontologies about time, such as DAML
Time [6] and the time ontology in OpenCyc [11]. Those time ontologies have
semantic differences among their concepts, such as events. Two genealogy on-
tologies, one based on DAML Time and the other on Cyc, might take identical
positions on all design choices about specifically genealogical questions, but look
different because of their differing assumptions about time, as expressed in the
way they make assertions about genealogically relevant events such as birth and
marriage.

1.2 The Relationship Between Ontology Translation and Ontology
Mapping

It’s important to distinguish ontology translation from ontology mapping, which
is the process of finding correspondence (mappings) between the concepts of two
ontologies. If two concepts correspond, they mean the same thing, or closely re-
lated things. Obviously, finding such mappings can be a valuable preprocessing
step in solving the ontology-translation problem for the two ontologies. Automat-
ing the process of ontology mapping is an active area of research [40,42,27,46].

However, the emphasis on finding mappings has led, we believe, to a distorted
view of the translation problem. Suppose one starts by assuming a particular
notation for ontologies, such as OWL [12]. These notations are often represented
visually as graph structures. Then it is natural to express a mapping between two
ontologies as a network of “meta-links” that join nodes and links in one ontology
graph with nodes and links in the other [36]. Each such link can be annotated
with labels specifying whether the two constructs it joins mean exactly the same
thing, or which of them covers a larger set of objects or relationships. It seems
almost inevitable at that point to think of translation as a process of substitution
of labels. One might identify a role R1 in one ontology with a role R2 in another.
(In the terminology of relational databases, the columns R1 and R2 would be
labelled as equivalent.) Translation then becomes a matter of relabelling data.

38 Dejing Dou, Drew McDermott, and Peishen Qi

Complexities arise when the labels aren’t exactly equivalent. Two classes might
be connected by a subclass link instead of being exactly equivalent.

Meanwhile, there is a competing paradigm for translation, centered around
the problem of answering queries in federated databases. Here the problem is
that a query asked with respect to one schema (say, a central ontology) may
require retrieval from a database using a different schema. This process is usually
thought of as translating the query rather than translating the data used to
answer it. The rules required to translate a query are essentially logical axioms
(or logic-programming rules) of the form A ← B, where A is in the query
vocabulary and B is in the vocabulary of the remote database [35,41].3 The
reason that this is not normally described as translating data from notation B
is that the spotlight is not on arbitrary data expressed in that notation. Instead
the main question is, Does the query result in finding all the bindings for its free
variables that follow from the contents of the B database?

In this and our previous papers [28,29], we explore the idea of abolishing the
distinction between “ontology translation” and “query translation,” assimilating
the former to the latter. Translation may be thought of abstractly as a two-stage
process: Inference and projection. That is, to translate a set of facts S1 expressed
in ontology 1 to ontology 2, we draw all possible inferences from S1, then project
the results into the vocabulary of S2. That is, we discard conclusions that are
not in the target vocabulary used by S2.

As stated, this proposal is highly schematic, and we will explain how it gets
instantiated into a practical algorithm. In this section, however, the discussion
will stay at a fairly abstract level. The first remark to make is that query trans-
lation already fits our paradigm, using backward chaining to keep the inference
headed toward relevant results.

However, backward chaining is not always the best option, or even a feasible
option. If an agent wants to do data mining on information supplied by another,
then it won’t know ahead of time what set of queries to use. Or an agent might
be asked for a description of an object it is trying to find (e.g., “a recent book by
Neal Stephenson”). It has in essence a small dataset that it wants to translate in
its entirety to the language of the agent that asked for the description. In such
cases we do not throw the infer-and-project framework overboard, we just use
it in a forward direction.

From this point of view, translation rules are just axioms. The purpose of on-
tology mapping should be to find these axioms. Finding correspondences between
symbols is just the first step. Unfortunately, in many papers, it often seems to
be the last step. We seek to tilt in the other direction by focusing on the axioms
and not worrying about automatic mapping at all. Unlike many other approaches
(e.g., [27]), we do not manage axioms as links between otherwise disparate on-
tologies. Instead, we work in the merge of two related ontologies, obtained by
taking the union of the concepts and the axioms defining them, and using XML

3 We’re oversimplifying somewhat here, by assuming that axioms define A predicates
in terms of B predicates. In the competing, “local as view” paradigm, the axioms
run the other way, and query translation is more difficult. See [44].

Ontology Translation on the Semantic Web 39

namespaces [17] to avoid name clashes. Bridging axioms are then added to relate
the concepts in one ontology to the concepts in the other through the terms in
the merge. This framework frees us from having to think in terms of just two
ontologies joined by a slender “bridge.” Instead, as many ontologies as are rel-
evant can’t be mixed together, and the bridging axioms can relate terms from
these ontologies in whatever ways seem appropriate.

Devising and maintaining a merged ontology is a job for human experts,
both domain experts and “knowledge engineers.” Once the merged ontology is
obtained, ontology translation can proceed without further human intervention.
The inference mechanism we use is a theorem prover optimized for the ontology-
translation task, called OntoEngine. We use it for deductive dataset transla-
tion (section 3), ontology-extension generation(section 4), and query handling
through different ontologies (section 5). We will also discuss related work in sec-
tion 6. In the last section, we will give some conclusions for our work so far and
discuss our future plans for developing interactive tools for ontology merging
based on our recent work on integrating different neuronal databases.

1.3 Three Kinds of Ontology Translation Problems

As we said above, we focus on three kinds of ontology translation problems:
dataset translation, ontology-extension generation and querying through differ-
ent ontologies.

Dataset translation can be defined as the translation of a “dataset” from one
ontology to another. We use the term dataset to mean a set of facts expressed in a
particular ontology [38]. The translation problem arises when web-based agents
try to exchange their datasets but they use different ontologies to describe them.

EXAMPLE 1.2.1. Suppose there is a web-based agent which uses the cmu bib
ontology to collect and process the bibliography information of researchers in the
area of computer science. A web-based agent at Yale can provide such informa-
tion about publications by members of the Yale CS department. The CMU agent
needs an ontology translation service to translate those datasets into the cmu bib
ontology before it can combine them with information it already has.

The problem of ontology extension generation is defined thus: given two re-
lated ontologies O1 and O2 and an extension (sub-ontology) O1s of O1, construct
the “corresponding” extension O2s.

EXAMPLE 1.2.2. DAML-S [5] is a general (“upper”) ontology describing
web services at the application level (i.e., focusing on business processes), and
WSDL Schema [16] is another general ontology describing web services at the
communication level (i.e., focusing on messages and protocols). To use DAML-S
to model a particular service, one must manually develop a sub-ontology that
uses the DAML-S vocabulary to describe, say, a book seller’s or airline’s web
service. But the description of a service is not complete or usable until it extends
all the way down to the communication level. In other words, given the DAML-
S sub-ontology for Congo.com, we would like to derive the “analogous” sub-
ontology of WSDL Schema. To oversimplify, if property PD maps to PW at the
upper level, and if PDC is a sub-property of PD belonging to the Congo ontology,

40 Dejing Dou, Drew McDermott, and Peishen Qi

we should be able to infer the corresponding sub-property PWC of Congo.com’s
counterpart at the communication level. This process is part of grounding, to
use the terminology of [22].

Finally, we have the problem of querying through ontologies, in which a query
made by one agent has the potential to be answered by another agent (perhaps
a database manager) that uses a different ontology. answer a query

EXAMPLE 1.2.3. Suppose a web agent using the drc ged [8] genealogy on-
tology wants to find the marriage date of King Henry VI of England. It finds a
knowledge base that it has reason to trust, which contains information about the
individuals and families of European royalty, but it uses a different genealogy
ontology, bbn ged [2]. Ontology translation is required for the agent to get its
query answered.

2 Our Approach: Ontology Merging and Automated
Reasoning

In this section, we flesh out the inference-then-projection schema, yielding an
approach we call ontology translation by ontology merging and automated rea-
soning. We have developed Web-PDDL as a strongly typed, first-order logic
language to describe axioms, facts, and queries, which we use as our internal
representation language for the formal inference. We have also designed and im-
plemented a first-order theorem prover, OntoEngine, which is optimized for the
ontology-translation task.

2.1 Separate Syntactic and Semantic Translation

Past work [32,25] on ontology translation has addressed both syntactic and
semantic-issues, but tends to focus more on syntactic translation [25] because it
is easier to automate. “Semantic” translation is more difficult because creating
mapping rules often requires subtle judgments about the relationships between
meanings of concepts in one ontology and their meanings in another. We assume
that, at least for the foreseeable future, it can’t be fully automated.4

We break ontology translation into three parts: syntactic translation from
the source notation in a web language to an internal representation, semantic
translation by inference using the internal notation, and syntactic translation
from the internal representation to the target web language. All syntactic issues
are dealt with in the first and third phases, using a translator, PDDAML [14] for
translating between our internal representation and OWL. If a new web language
becomes more popular for the Semantic Web, we only need extend PDDAML to

4 The translation problem is certainly “AI-complete” in the sense that a program
that solved it would have to be as intelligent as a person; but in fact it may be even
harder than that, because agreeing on a translation in the most difficult cases might
require bargaining between experts about what their notations really mean. This is
not really the sort of problem a single program could solve, even in principle.

Ontology Translation on the Semantic Web 41

handle it (assuming it is no more expressive than first-order logic). This allows
us to focus on semantic translation from one ontology to another.

Our internal representation language is Web-PDDL [39], a strongly typed
first order logic language with Lisp-like syntax. It extends the Planning Domain
Definition Language (PDDL) [37] with XML namespaces, multi-type inheritance
and more flexible notations for axioms. Web-PDDL can be used to represent
ontologies, datasets and queries. Here is an example, part of the yale bib ontology
written in Web-PDDL.

(define (domain yale_bib-ont)

(:extends (uri "http://www.w3.org/2000/01/rdf-schema#" :prefix rdfs))

(:types Publication - Obj

Article Book Incollection Inproceedings - Publication

Literal - @rdfs:Literal)

(:predicates (author p - Publication a - Literal)

.....))

The :extends declaration expresses that this domain (i.e., ontology) is extended
from one or more other ontologies identified by the URIs. To avoid symbol
clashes, symbols imported from other ontologies are given prefixes, such as
@rdfs:Literal. These correspond to XML namespaces, and when Web-PDDL is
translated to RDF [39], that’s exactly what they become. Types start with capi-
tal letters and are the same concept as classes in some other web languages, such
as OWL. A type T1 is declared to be of a subtype of a type T0 by writing “T1

- T0” in the :types field of a domain definition. In other contexts, the hyphen
notation is used to declare a constant or variable to be of a type T , by writing “x
- T ”. Predicates correspond roughly to “properties” in OWL, but they can take
any number of arguments. There are also functions, including Skolem functions
and built-in functions such as + and - that can be evaluated when appropriate.

Assertions are written in the usual Lisp style: (author pub20 ”Tom Jefferson”),
for instance. We’ll discuss quantifiers shortly.

Web-PDDL reflects a fundamentally different philosophy about knowledge-
representation (KR) languages than that embodied in notations such as RDF
and OWL. The latter reflect the strong opinions in the Description Logic com-
munity that a KR language should make it impossible to pose undecidable (or
even intractable) problems. Our attitude is that languages should be as expres-
sive as different reasoning applications will require. There are many interesting
application areas where useful programs exist in spite of scary worst-case per-
formance. As we hope to show below, ontology translation is a good example,
where certain simple techniques from theorem proving solve a large portion of
the problem, even though theorem proving is in principle undecidable.

2.2 Axiom-Based Ontology Merging

If all ontologies, datasets and queries can be expressed in terms of the same
internal representation, such as Web-PDDL, semantic translation can be imple-
mented as formal inference working with a merged ontology of the source and
target ontologies. Ontology merging is the process of taking the union of the

42 Dejing Dou, Drew McDermott, and Peishen Qi

concepts of source and target ontologies together and adding the bridging ax-
ioms to express the relationship (mappings) of the concepts in one ontology to
the concepts in the other. Such axioms can express both simple and complicated
semantic mappings between concepts of the source and target ontologies. The
simple semantic mappings include “subClassOf,” “subPropertyOf” or “equiva-
lent” relationships. For example, if two types (class) are equivalent (sameClas-
sAs), such as the Book type in the yale bib ontology is equivalent to the Book
type in the cmu bib ontology. Because types are not objects, we cannot write an
axiom such as (= T1 T2). So we have to use a pseudo-predicate (or, perhaps,
“meta-predicate”) T-> and write bridging axioms about equivalent types. In the
merged ontology of yale bib and cmu bib, the equivalent relationship about their
Book types is written in Web-PDDL:

(:axioms

(T-> @yale_bib:Book Book)

(T-> @cmu_bib:Book Book)

...

Namespace prefixes distinguish yale bib’s Book and cmu bib’s Book. The symbols
without a prefix are native to the merged ontology. Our axiom defines a new Book
type in the merged ontology, and makes yale bib’s Book equivalent to cmu bib’s
Book by making both of them be equivalent to the new defined Book in the
merged ontology.

The reason we need a Book type in the merge is: the merge will be a totally
new ontology which can be merged further with other ontologies. Suppose we
have got the cyb ontology as the merge of the cmu bib and yale bib ontologies.
There is another foo bib ontology needs to be merged with the cyb ontology and
the foo bib ontology also has a Book type. Since we already have cyb’s Book,
we don’t need to specify the relationship between foo bib’s Book and cmu bib’s
Book, or the relationship between foo bib’s Book and yale bib’s Book. What we
need to do is specify the relationship between foo bib’s Book and cyb’s Book.
Therefore, we need to define types and predicates in the merge, even through
they are the same as one of two related types or predicates in the component
ontologies.

The more complicated semantic mappings, such as the one about yale bib’s
booktitle and cmu bib’s booktitle in Example 1.1.2, can be expressed as bridging
axioms in the merged ontology. But we must be careful to distinguish the two
senses of (booktitle a s), which in yale bib means “Inproceedings or Incollection
a appeared in a book with title s” and in cmu bib means “The title of book
a is s”. Namespace prefixes suffice for the distinguishing two booktitles. The
more interesting task is to relate the two senses, which we accomplish with the
bridging axioms

(forall (a - Article tl - String)

(iff (@yale_bib:booktitle a tl) (booktitle a tl)))

(forall (a - @yale_bib:Inproceedings tl - String)

(iff (booktitle a tl)

(exists (p - Proceedings)

Ontology Translation on the Semantic Web 43

(and (contain p a)

(@cmu_bib:inProceedings a p)

(@cmu_bib:booktitle p tl)))))

Note that the bridging axioms can be used to go from either ontology to the
other. The second axiom uses an existential quantifier and p is a existential
quantified variable. It also can be written in the form of skolem functions after
skolemization [45]:

(forall (a - @yale_bib:Inproceedings tl - String)

(if (booktitle a tl)

(and (contains (@skolem:aProc a tl) - Proceedings a)

(@cmu_bib:inProceedings a (@skolem:aProc a tl))

(@cmu_bib:booktitle (@skolem:aProc a tl) tl)))))

We use the prefix @skolem: as a convention for the skolem functions.
Some bridging axioms may need “callable” functions. For example, yale bib’s

year predicate uses Number to represent the year when a publication was pub-
lished. However, cmu bib’s year predicate uses String to represent the year. When
we try to express the mapping between these two predicates, we select yale bib’s
year predicate as the one in the merge. We have to use two functions, one for
converting a number to a string and the other one for converting a string to a
number, to express these mapping axioms:

(forall (p - Publication yn - @cmu_bib:Year)

(if (@cmu_bib:year p yn)

(year p (@built_in:NumbertoString yn))))

(forall (p - Publication y - String)

(if (year p y)

(@cmu_bib:year p (@built_in:StringtoNumber y))))

We use the prefix built in to indicate that these two functions are built-in func-
tions.

For the foreseeable future the construction of merged ontologies has to involve
the efforts of human experts. If necessary, when the source and target ontologies
are very large, automatic mapping tools can give some suggestions to human
experts, but, in our view, before we know what bridging axioms look like, there’s
no point in spending a lot of effort on building automated tools.

2.3 OntoEngine: An Optimized Theorem Prover for Semantic
Translation

Our decision to use a theorem prover for semantic translation may cause some
concern, given that in general a theorem prover can run for a long time and
conclude nothing useful. However, in our experience, the sorts of inferences we
need to make are focused on the following areas:

44 Dejing Dou, Drew McDermott, and Peishen Qi

– Forward chaining from facts in source ontology to facts in target ontology.
– Backward chaining from queries in one ontology to get bindings from datasets

in another.
– Introduction of skolem terms from existential quantified variables or skolem

functions.
– Use of equalities to substitute existing constant terms for skolem terms.

Our theorem prover, called OntoEngine, is specialized for these sorts of in-
ference. OntoEngine uses generalized Modus Ponens chaining through bridging
axioms with specified directions. To avoid infinite loops, we set a limit to the
complexity of terms that OntoEngine generates; and, of course, OntoEngine
stops when it reaches conclusions (or, in the case of backward chaining, goals)
in the target ontology, which is called target control. Target control can avoid
some redundant inference back from target ontology to source ontology. In addi-
tion, OntoEngine has a good type-checking system based on the strongly typed
feature of Web-PDDL. The type-checking system can be used in both forward
and backward chaining and can terminate blind alleys at the unification stage,
without generating goals to prove that a term is of the correct type.

OntoEngine can use equalities to substitute existing constant terms for skolem
terms or other general function terms. Equality substitutions can decrease redun-
dant inference results, such as redundant facts and queries. In OWL ontologies,
equalities occur mainly in cardinality axioms, which state that there is exactly
one or at most one object with a given property.5 For example, in a genealogy
ontology, there are two predicates husband and wife, whose cardinality axioms
say that one family has only one husband and only one wife. The cardinality
axiom about husband can be expressed in Web-PDDL:

(forall (f - Family h1 - Male h2 - Male)

(if (and (husband f h1)

(husband f h2))

(= h1 h2)))

It is important to compare OntoEngine with other inference systems, such
as Datalog systems, description logic systems and resolution theorem provers,
which may be used to do reasoning with bridging axioms to implement seman-
tic translations. The comparisons also can explain why we designed and built
OntoEngine rather than use other existing inference systems.

A Datalog system can do backward chaining with Prolog-like rules to answer
queries using view relations in databases [44]. To avoid generating an infinite
number of answers, Datalog rules are required to satisfy some safety condi-
tions [47]. Hence, there are not any existentially quantified variable in the head
(conclusion) side of a Datalog rule and Datalog systems don’t have any mecha-
nism to generate skolem terms or do equality substitution. However, relationships
between concepts from different ontologies may require bridging axioms with ex-
istentially quantified variable in the conclusion side, such as the bridging axiom
about booktitle in section 2.2. OntoEngine can generate skolem terms and do

5 Actually, you can specify other cardinalities, but it is pretty rare to do so.

Ontology Translation on the Semantic Web 45

equality substitution to avoid redundant answers so that it can handle such kind
of complicated axioms.

Description logics [23] are subsets of first order logic. Compared to the stan-
dard predicate calculus, the expressivity of description logic is limited, in order
to guarantee the decidability of inference. There is a tradeoff between the ex-
pressivity of a representation language and the difficulty of reasoning over the
representation built using that language. Although description logic (DL) reason-
ing systems are usually quite efficient, sometimes guaranteeably so, they cannot
generate new objects — only select subsets of existing objects. For example,
the DL systems cannot generate skolem terms although description logics have
existential quantifier. The DL rules (axioms) do not allow (built-in) functions
which is necessary in some bridging axioms, such as year example in section 2.2.
OntoEngine can generate skolem terms and process the axioms with (built-in)
functions.

OntoEngine is not a complete first-order theorem prover, unlike resolution-
based systems, such as Otter [48]. One reason (besides our obvious desire for
efficiency) is that we have empirically observed that some deductive techniques
are not necessary for ontology translation. Most important, so far we have had
little need for case analysis, in which a proposition is proved by showing that it
follows from A and from B, when A ∨B is the strongest conclusion that can be
drawn about A and B.

3 Deductive Ontology Translation Between Datasets

In this section we describe how to apply our new approach to implement dataset
translation. We set up an online ontology translation service, OntoMerge, to do
deductive dataset translation on the Semantic Web. A more detailed account
on the forward chaining algorithm for our generalized modus ponens reasoner
appears in [28].

The problem for translating datasets can be expressed abstractly thus: given
a set of facts in one vocabulary (the source), infer the largest possible set of
consequences in another (the target). We break this process into two phases:

1. Inference: working in a merged ontology that combines all the symbols and
axioms from both the source and target, draw inferences from source facts.

2. Projection: Retain conclusions that are expressed purely in the target vo-
cabulary.

In Example 1.2.1, suppose the source ontology is yale bib and the target
ontology is cmu bib. Considering the semantic difference mentioned in Example
1.1.2, the fact “The publication BretonZucker96 appeared in the Proceedings of
IEEE Conf. on Computer Vision and Pattern Recognition” is expressed in the
yale bib ontology thus:

(:objects ... BretonZucker96 - InProceedings)

(:facts ... (booktitle BretonZucker96 "Proceedings of CVPR’96"))

46 Dejing Dou, Drew McDermott, and Peishen Qi

In the cmu bib ontology, the same fact should be expressed thus:

(:objects ... BretonZucker96 - Article proc38 - Proceedings)

(facts ... (inProceedings BretonZucker96 proc38)

(booktitle proc38 "Proceedings of CVPR’96") ...)

Recall the bridging axioms related to this booktitle example:

(forall (a - Article tl - String)

(iff (@yale_bib:booktitle a tl) (booktitle a tl)))

(forall (a - @yale_bib:Inproceedings tl - String)

(iff (booktitle a tl)

(exists (p - Proceedings)

(and (contain p a)

(@cmu_bib:inProceedings a p)

(@cmu_bib:booktitle p tl)))))

When used from left to right, the bridging axioms causes the inference engine to
introduce a new constant (proc38) to designate the proceedings that the article
(BretonZucker96) appears in. Such skolem terms are necessary whenever the
translation requires talking about an object that can’t be identified with any
existing object.

On the Semantic Web model, the knowledge is mostly represented in XML-
based web languages. We have set up an online ontology-translation system
called OntoMerge. OntoMerge serves as a semi-automated nexus for agents and
humans to find ways of coping with notational differences, both syntactic and
semantic, between ontologies. OntoMerge wraps OntoEngine with PDDAML,
which implement the syntactic translation for the input and output DAML or
OWL files. The architecture of OntoMerge for translating datasets is shown in
Figure 1.

�
�

�
�OntoEngine

�
�

�
�PDDAML

�
�

�
�PDDAML

Input Dataset

in OWL

�

Input Dataset

in Web-PDDL

�
�

Merged Ontology

in Web-PDDL

�

� Output Dataset

in Web-PDDL

�

�

Output Dataset

in OWL

Fig. 1. The OntoMerge Architecture for Translating Datasets

When receiving an input dataset to translate, OntoEngine needs a merged
ontology that covers the source and target ontologies. If no such merged ontology
is available, all OntoEngine can do is to record the need for a new merger. (If

Ontology Translation on the Semantic Web 47

enough such requests come in, the ontology experts may wake up and get to
work.) Assuming that a merged ontology exists, located typically at some URL,
OntoEngine tries to load it in. Then it loads the dataset (facts) in and does
forward chaining with the bridging axioms, until no new facts in the target
ontology are generated.

OntoMerge has worked well so far, although our experience is inevitably
limited by the demand for our services. In addition to the small example from the
dataset6 using the yale bib ontology to the equivalent dataset using the cmu bib
ontology, we have also run it on some big ones.

Experiment 1: OntoMerge translates a dataset7 with 7564 facts about the
geography of Afghanistan using more than 10 ontologies into a dataset in the map
ontology [10]. 4611 facts are related to the geographic features of Afghanistan
described by the geonames ontology [9] and its airports described by the airport
ontology [1]. Some facts about an airport of Afghanistan are:

(@rdfs:label @af:OAJL "JALALABAD")

(@airport:icaoCode @af:OAJL "OAJL")

(@airport:location @af:OAJL "Jalalabad, Afghanistan")

(@airport:latitude @af:OAJL 34.399166666666666)

(@airport:longitude @af:OAJL 70.49944444444445)

Actually either of these two ontologies just partly overlaps with the map ontology.
The main semantic difference between their overlapping with the map ontology
is: in the map ontology, any location in a map is a point whether it is an airport
or other kind of geographic feature such as a bridge. But in the airport and
geonames ontologies, an airport is a special location which is different from a
bridge, and it’s not a point. We have merged the geonames ontology and the
airport ontology with the map ontology. One of bridging axioms in the merge of
the airport ontology and the map ontology is below:

(forall (x - Airport y z - Object)

(if (and (@airport:latitude x y) (@airport:longitude x z))

(and (location (@skolem:aPoint x y z) - Point

(@skolem:aLocation x y z) - Location)

(latitude (@skolem:aLocation x y z) y)

(longitude (@skolem:aLocation x y z) z))))

After OntoEngine loads the two merged ontologies and all 7564 facts in, those
4611 facts in the airport and geonames ontologies are translated to 4014 facts in
the map ontology by inference. The translated dataset for the above airport like:

(@map:label Point31 "JALALABAD")

(@map:label Point31 "OAJL")

(@map:label Point31 "Jalalabad, Afghanistan")

(@map:location Point31 Location32)

(@map:latitude Location32 34.399166666666666)

(@map:longitude Location32 70.49944444444445)

6 http://cs-www.cs.yale.edu/homes/dvm/daml/datasets/yale bib dataset.daml
7 http://www.daml.org/2001/06/map/af-full.daml

48 Dejing Dou, Drew McDermott, and Peishen Qi

As part of DAML Experiment 2002, the result can be used by a map agent
(BBN’s OpenMap) to generate a map image about the airports and geographic
features of Afghanistan. The semantic translation (inference) process by Onto-
Engine, which contains 21232 reasoning steps, only takes 18 seconds (including
the time for loading the input dataset and merged ontologies) on our PC in PIII
800MHZ with 256M RAM.

Experiment 2: OntoEngine translates a bigger dataset8 with 21164 facts (on
3010 individuals and 1422 families of European royalty) in the bbn ged genealogy
ontology [2] to 26956 facts in the drc ged genealogy ontology [8]. Here are some
facts in the bbn ged ontology about a King of France :

(@bbn_ged:name @royal92:@I1248@ "Francis_II")

(@bbn_ged:sex @royal92:@I1248@ "M")

(@bbn_ged:spouseIn @royal92:@I1248@ @royal92:@F456@)

(@bbn_ged:marriage @royal92:@F456 @royal92:event3138)

(@bbn_ged:date @royal92:event3138 "24 APR 1558")

(@bbn_ged:place @royal92:event3138 "Paris,France")

Although these two genealogy ontology are very similar and overlap a lot,
there are still some differences. For example, in the drc ged ontology, there are
two properties wife and husband, but the most related concept in the bbn ged
ontology is the spouseIn property. As our general understanding, if a person is
a male (his sex is “M”) and he is spouseIn some family which is related to some
marriage event, he will be the husband of that family. We have written the
bridging axioms for the bbn ged and drc ged ontologies to express such semantic
differences. The one for the above example is given below.

(forall (f - Family h - Individual m - Marriage)

(if (and (@bbn_ged:sex h "M") (@bbn_ged:spouseIn h f)

(@bbn_ged:marriage f m))

(husband f h)))

This merged genealogy ontology works well for semantic translation. After
loading the input dataset and merged ontology, OntoEngine runs 85555 reasoning
steps to generate all the 26956 facts. The whole process takes 59 seconds. The
translated dataset for King Francis II in the drc ged ontology is:

(@drc_ged:name @royal92:@I1248@ "Francis_II")

(@drc_ged:sex @royal92:@I1248@ "M")

(@drc_ged:husband @royal92:@F456 @royal92:@I1248@)

(@drc_ged:marriage @royal92:@F456 @royal92:event3138)

(@drc_ged:date @royal92:event3138 "24 APR 1558")

(@drc_ged:location @royal92:event3138 "Paris,France")

Prospective users should check out the OntoMerge website9. We have put
all URLs of existing merged ontologies there. OntoMerge is designed to solicit
descriptions of ontology-translation problems, even when OntoMerge can’t solve
them. However, according to our experience, we believe that in most cases we
8 http://www.daml.org/2001/01/gedcom/royal92.daml
9 http://cs-www.cs.yale.edu/homes/dvm/daml/ontology-translation.html

Ontology Translation on the Semantic Web 49

can develop and debug a merged ontology within days that will translate any
dataset from one of the ontologies in the merged set to another. It’s not difficult
for a researcher who knows first-order logic to write bridging axioms in Web-
PDDL. We encourage other people to develop their own merged ontology to
solve ontology translation problems they encounter.

4 Ontology Extension Generation

As we have said, manually developing sub-ontologies extended from existing
ontology(s) is tedious at the Web scale. Tools are needed to make it easier
because the number of sub-ontologies is usually much larger. In this section,
we will introduce our approach to generate ontology extensions automatically
by ontology translation.

One scenario is that ontology experts have some sub-ontologies of the existing
ontology(s), and they want to generate the corresponding sub-ontologies of other
related existing ontology(s). If they know the relationships between those exist-
ing ontologies, ontology-translation tools can automate this process. Another
scenario is that ontology experts often need to update some existing ontologies
when new knowledge or new requirement comes up. This work has to be done
manually, but how about updating their sub-ontologies? Since they know the
relationships between the old and updated ontologies, new sub-ontologies can
be generated automatically.

In Example 1.2.2, if ontology experts can merge DAML-S and WSDL Schema
first, they can translate Congo.com into its “grounding.” The advantage is they
only need to get one merged ontology for DAML-S and WSDL Schema. Further
translation from the sub web service ontologies of DAML-S to their groundings
on WSDL Schema can be implemented automatically.

The structure for OntoMerge to generate ontology extensions is similar to
that shown in Figure 1. The difference is the input and output are not datasets
but sub-ontologies. Instead of a set of facts, we input a set of sub-property
definitions. In Example 1.2.2, the following sub-property occurs in the Congo.com
ontology:

(deliveryAddress sp1 - SpecifyDeliveryDetails st2 - @xsd:string)

where SpecifyDeliveryDetails is a subtype of @DAML-S:Process. To find the corre-
sponding sub-property of a WSDL property, we create an instance of deliveryAd-
dress, with new skolem constants for the variables:

(deliveryAddress SDD-1 str-2)

;;SDD-1 and str-2 are skolem constants of types SpecifyDeliveryDetails

;;and @xsd:string respectively

Hypothetically assume that this is a true fact, and draw conclusions using for-
ward chaining. This inference process uses the axioms in the Congo ontology,
and the bridging axioms in the merged ontology for DAML-S and WSDL Schema
such as:

50 Dejing Dou, Drew McDermott, and Peishen Qi

(forall (ob1 ob2)

(if (deliveryAddress ob1 ob2) (@process:input ob1 ob2)))

;;the above axiom is from the Congo ontology to express that

;;deliveryAddress is a sub property of @process:input in DAML-S.

(forall (x - @DAML-S:Process)

(exists (sg - ServiceGrounding) (ground sg x)))

(forall (p - Process sg - ServiceGrounding ob1 - String)

(if (and (ground sg p) (@process:input p ob1))

(exists (ms - Message pa - Part pm - Param)

(and (@wsdl:input p pm) (paramMessage pm ms)

(part ms pa) (partElement pa ob1)))))

;;these two axioms are from merged ontology for DAML-S and WSDL Schema.

OntoEngine can generate the translated facts in Web-PDDL:

(@wsdl:input SDD-1 Param374)

(@wsdl:operation PortType367 SDD-1)

(@wsdl:partElement Part376 str-2)

(@wsdl:part Message375 Part376)

(@wsdl:paramMessage Param374 Message375)

where Param374 and such are further skolem terms produced by instantiating
existential quantifiers during inference.

All of the conclusions are expressed in the WSDL Schema ontology. The
first three mention the two skolem constants in the original assumption. These
are plausible candidates for capturing the entire meaning of the deliveryAddress
predicate as far as WSDL Schema is concerned. So to generate the new extension
WSDL congo, simply create new predicates for each of these conclusions and
make them sub-properties of the predicates in the conclusions:

(define (domain WSDL_congo)

(:extends (uri "http://schemas.xmlsoap.org/wsdl/"))

(:types SpecifyDeliveryDetails - Operation)

(:predicates

(deliveryAddress_input arg1 - SpecifyDeliveryDetails arg2 - Param)

(deliveryAddress_operation arg1 - PortType

arg2 - SpecifyDeliveryDetails)

(deliveryAddress_partElement arg1 - Part arg2 - @xsd:string)

...

The corresponding axioms for sub-property relationships are:

(forall (ob1 ob2) (if (deliveryAddress_input ob1 ob2)

(@wsdl:input ob1 ob2)))

(forall (ob1 ob2) (if (deliveryAddress_operation ob1 ob2)

(@wsdl:operation ob1 ob2)))

(forall (ob1 ob2) (if (deliveryAddress_partElement ob1 ob2)

(@wsdl:partElement ob1 ob2)))

Ontology Translation on the Semantic Web 51

The output sub-ontology is a grounding of Congo in WSDL Schema and it can
be represented in WSDL after feeding it into a translator between Web-PDDL
and WSDL. That translator has been embedded in PDDAML and the output
for the grounding of Congo in WSDL looks like:

<wsdl:message name="SpecifyDeliveryDetailsInputMsg">

<wsdl:part name="deliveryAddressPart"

element="xsd:string"/>

...

</wsdl:message>

<wsdl:portType name="SpecifyDeliveryDetails_PortType">

<wsdl:operation name="SpecifyDeliveryDetails">

<wsdl:input name="SpecifyDeliveryDetailsInput"

message="SpecifyDeliveryDetailsInputMsg"

</wsdl:input>

</wsdl:operation>

</wsdl:portType>

Our automatically generated WSDL congo is very similar to the manually
produced grounding by the DAML-S group10.

This result is encouraging, but obviously much remains to be done. The tech-
nique of treating skolemized definitions as pseudo-axioms can translate only ax-
ioms expressing sub-property relationships in the source sub-ontology. Although
this technique works fine for grounding Congo to WSDL, other ontology exten-
sion generation problems may need translating more general axioms from the
source sub-ontology to the target sub-ontology. We have developed an algorithm
called automatic axiom derivation to deal with it11.

5 Querying Through Different Ontologies

Forward-chaining deduction is a data-driven inference technique that works well
for translating datasets and ontology-extension generation. We have also em-
bedded a more traditional backward-chaining reasoner into OntoEngine. This
module becomes the central component of an end-to-end workflow (similar to
that in figure 1) to translate queries expressed in the standard query language
DQL [7] to Web-PDDL, answer the queries using backward chaining, and trans-
late the results back as a DQL response. As usual, we will focus on the semantic
internals of this process, not the syntactic translations between Web-PDDL and
DQL.

To extend OntoMerge to handle querying problem through different ontolo-
gies, we embedded some tools for query selection and query reformulation. One
input query can be the conjunction of some sub-queries and each of them may

10 http://www.daml.org/services/daml-s/0.7/CongoGrounding.wsdl
11 The full solution about general axioms translation can be found in Dejing Dou’s

Ph.D. Dissertation Ontology Translation by Ontology Merging and Automated Rea-
soning (Technical Report 1300, Yale Computer Science, August, 2004).

52 Dejing Dou, Drew McDermott, and Peishen Qi

be answered by different knowledge bases. We might not be able to “translate”
the whole input query in one ontology to the query in another. For example,
suppose we add to the query of Example 1.2.3 a conjunct asking for the name of
the woman Henry VI married (the @xsd prefix is for “XML Schema Datatype”):

(:query (freevars (?k ?q - Individual ?f - Family ?m - Marriage

?n - @xsd:string ?d - @xsd:date)

(and (@drc_ged:name ?k "Henry_VI") (@drc_ged:husband ?f ?k)

(@drc_ged:wife ?f ?q) (@drc_ged:name ?q ?n)

(@drc_ged:marriage ?f ?m) (@drc_ged:date ?m ?d))))

The required answer must give the bindings for variables ?d and ?n.
This query is expressed using the drc ged ontology. Suppose an agent asks

OntoMerge for help in answering it, and OntoMerge’s library of merged on-
tologies includes some with drc ged ontology as a component. This means that
OntoMerge might be able to help answer the query with those web resources
described by the other component ontologies of the merged one. In particular,
suppose OntoMerge has a merged ontology for the drc ged and bbn ged ontolo-
gies. It can would ask some broker agent to find some web knowledge bases
using the bbn ged ontology. In this experiment, we just assume one such web
knowledge base exists (and is trustworthy!).

The whole process is described as follows. OntoMerge calls the query selec-
tion tool to select one sub-query. Here, the tool will first select (@drc ged:name
?k ”Henry VI”) because it has only one variable. OntoEngine then does back-
ward chaining for this sub-query and translates it into a query in the bbn ged
ontology, (@bbn ged:name ?k ”Henry VI”). The new one is sent to the web
knowledge base described by the bbn ged ontology, which returns the binding
{?k/@royal92:@I1217@}. (@royal92:@I1217@ is an Individual in the web knowledge
base.) With this binding, OntoMerge call the query-reformulation tool to re-
form the rest of the sub-queries and get another selection: (@drc ged:husband ?f
@royal92:@I1217@). After backward chaining and querying, the next binding we
get is {?f/ @royal92:@F448@}, which leads to a new sub-query

(and (@drc_ged:wife @royal92:@F448@ ?q)

(@drc_ged:marriage @royal92:@F448@ ?m))

and its corresponding one in the bbn ged ontology:

(and (@bbn_ged:sex ?q "F") (@bbn_ged:spouseIn ?q @royal92:@F448@)

(@bbn_ged:marriage @royal92:@F448@ ?m))

The bindings this time are {?q/@royal92:@I1218@}, and {?m/@royal92:event3732}.
Repeat the similar process and the final query in the bbn ged ontology is

(and (@bbn_ged:name @royal92:@I1218@ ?n)

(@bbn_ged:date @royal92:event3732 ?d))

The ultimate result is {?n/”Margaret of Anjou”} and {?d/”22 APR 1445”}.

Ontology Translation on the Semantic Web 53

In addition, answering query by backward chaining may be necessary in the
middle of forward chaining. For example, when OntoEngine is unifying the fact
(P c1) with (P ?x) in the axiom:

(P ?x) ∧ (member ?x [c1, c2, c3])⇒ (Q ?x)

it can’t conclude (Q c1) unless it can verify that c1 is a member of the list
[c1,c2,c3], and the only way to implement this deduction is by answering that
query by backward chaining.

6 Related Work

As we said at the beginning of this paper, one can consider our work to be the
application of insights from query translation to the general ontology-translation
problem. We have been able to draw on a long tradition of work in query trans-
lation for databases [42,44,20], and for web searching [21,41]. Much of this work
(e.g., [30,20]) has tackled the query optimization problem, which we have not
focused much on yet, although there are some query selection and reformulation
tools in OntoMerge.

There has been some previous work on developing deductive-rule systems
for the semantic web [33]. The emerging standard is OWL Rules [13], which
can be characterized as an XML serialization of logic-programming rules. While
we use heuristics similar to those embodied in logic programming, we believe
that ontology translation requires equality substitution and a more systematic
treatment of existential quantifiers than logic programming can provide. The
dominant paradigm for the Semantic Web is description logics (DLs), and there
has been work on reconciling the rule-based approach with DLs [31]. We would
rather “layer” logic on top of RDF in a way that leaves it completely independent
of the constraints of description logics [39].

Our ontology merging is rather different from what some other people have
emphasized in talking about ontology combination, because traditionally merg-
ing two ontologies has meant finding mappings between them and using those to
weed out redundancies. The PROMPT [43] and Chimaera [40] are two promi-
nent examples. As we said in section 1, our interest is not in mapping, but in the
content of the rules that mapping might help discover. The large literature on
ontology mapping(e.g., [27]) is therefore only tangentially relevant to our work.

One approach to ontology translation is to create a global, centralized on-
tology that all other notations can be translated into [32,34]. The problem with
this strategy is that it is difficult to keep the central ontology updated and in
harmony with all sub-ontologies, especially since new sub-ontologies will appear
every day. If someone creates a simple, lightweight ontology for a particular do-
main, he may be interested in translating it to neighboring domains, but can’t
be bothered to think about how it fits into a grand unified theory of knowledge
representation.

The idea of building up merged ontologies incrementally, starting with local
mergers, has been explored in a recent paper [19], in which bridging rules are

54 Dejing Dou, Drew McDermott, and Peishen Qi

assumed to map database relations by permuting and projecting columns. These
rules are simpler than ours, but in return the authors get some very interesting
algorithms for combining local ontology mappings into more global views.

People working in specific domains have tried to use ontology techniques
to help their own data integration tasks. For example, some eCommerce and
Tourism researchers have proposed a way to do data translation between real-
world (e.g. travel and tourism) ontologies [26].

7 Conclusions and Future Work

The distributed nature of the Web makes ontology translation one of the most
difficult problems web-based must cope with. We described our new approach to
implement ontology translation on the Semantic Web. Here are the main points
we tried to make:

1. Ontology translation is required when translating datasets, generating on-
tology extensions, or querying through different ontologies. It must be dis-
tinguished from ontology mapping, which is the process of finding likely
correspondences between symbols in two different ontologies. This sort of
mapping can be a prelude to translation, but it is likely to be necessary for
the foreseeable future for a human expert to produce useful translation rules
from proposed correspondences.

2. Ontology translation can be thought of in terms of formal inference in a
merged ontology. The merge of two related ontologies is obtained by taking
the union of the terms and the axioms defining them, then adding bridging
axioms that relate the terms in one ontology to those in the other through
the terms in the merge.

3. If all ontologies, datasets and queries can be expressed in terms of the same
internal representation, semantic translation can be implemented by auto-
matic reasoning. We believe the reasoning required can be thought of as
typed, first-order inference with equality substitution, easily implemented
using a language such as Web-PDDL for expressing type relationships and
axioms. The syntactic translation can be done by an automatic syntax trans-
lator between Web-PDDL and other Web agent languages.

We set up an online ontology translation server, OntoMerge, to apply and
validate our method. We have evaluated our approach by the experiments for
large web knowledge resources and its performance is good so far. We also discuss
the efficiency and completeness of our inference system. We hope the existence
of OntoMerge will get more people interested in the hard problem of generating
useful translation rules.

Our results so far open up all sorts of avenues of further research, especially
in the area of automating the production of bridging axioms. Although these
can be quite complicated, many of them fall into standard classes. We are work-
ing on tools that allow domain experts to build most such axioms themselves,
through a set of dialogues about the form of the relation between concepts in

Ontology Translation on the Semantic Web 55

one ontology and concepts in the other. We also will develop tools to check the
consistency of the generated bridging axioms. The long-range goal is to allow
domain experts to generate their own merged ontologies without being familiar
with the technicalities of Web-PDDL.

Recently, we began cooperating with the medical informatics researchers of
Yale to apply our approach to integrate different Web-based neuronal databases:
Yale’s SenseLab database and Cornell’s CNDB database. Although both of their
data and database schemas have been marked up by using some XML specifi-
cations, there are still some major differences between what the data of each
database concerns. The differences exist because the database designers had
different views and purposes: SenseLab’s data is about model and structure in-
formation of a particular class of neurons but CNDB’s is about experimental
data for individual neurons measured at a particular day. These kind of dif-
ferences make data integration very difficult. Based on OntoMerge structure,
we are designing some initial tools to support construction and testing of ax-
ioms for merging two different database schemas. Our future work will focus
on designing human computer interactive tools to help domain experts, such as
neuroscientists, to find and build bridging axioms between the concepts from
different ontologies or database schemas. The biggest obstacle is that domain
experts may not be familiar with any formal logic languages but only know
the knowledge of their domains. Therefore, this future work will involve auto-
matic ontology mapping, bridging axiom production from machine learning and
natural language processing, pattern reuse and consistency testing for merged
ontologies.

Acknowledgements

We would like to thank Mike Dean and Troy Self from BBN Technologies for pro-
viding the data used for our experiments. We are grateful for helpful comments
from the anonymous referees.

References

1. http://www.daml.org/2001/10/html/airport-ont.daml.
2. http://www.daml.org/2001/01/gedcom/gedcom.daml.
3. http://www.daml.ri.cmu.edu/ont/homework/atlas-publications.daml.
4. http://www.daml.org/ontologies/
5. http://www.daml.org/services/.
6. http://www.ai.sri.com/daml/ontologies/time/Time.daml.
7. http://www.daml.org/2003/04/dql/.
8. http://orlando.drc.com/daml/Ontology/Genealogy/3.1/Gentology-ont.daml.
9. http://www.daml.org/2002/04/geonames/geonames-ont.daml.
10. http://www.daml.org/2001/06/map/map-ont.daml.
11. http://opencyc.sourceforge.net/daml/cyc.daml.
12. http://www.w3.org/TR/webont-req/.
13. http://www.daml.org/2003/11/swrl/.

56 Dejing Dou, Drew McDermott, and Peishen Qi

14. http://www.cs.yale.edu/homes/dvm/daml/pddl daml translator.html.
15. http://www.w3c.org/TR/wsdl.
16. http://schemas.xmlsoap.org/wsdl/.
17. http://www.w3.org/TR/REC-xml-names/
18. http://www.cs.yale.edu/homes/dvm/daml/ontologies/daml/yale bib.daml.
19. K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. The chatty web: emergent

semantics through gossiping. In Proc. International World Wide Web Conference,
2003.

20. S.Adali, K.Candan, Y.Papakonstantinou, and V. Subrahmanian. Query Caching
and Optimization in Distributed Mediator Systems. In Proc. ACM SIGMOD Conf.
on Management of Data, pages 137–148, 1996.

21. Yigal Arens, Craig A. Knoblock and Wei-Min Shen. Query reformulation for dy-
namic information integration. J. Intelligent Information Systems — Special Issue
on Intelligent Information Integration 6(2/3), pp. 99–130

22. D.-S. C. A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. Mc-
Dermott, S. A. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara.
Daml-s: Web service description for the semantic web. In Proceedings of Interna-
tional Semantic Web Conference 2002, pages 348–363, 2002.

23. F. Baader, D. McGuinness, D. Nardi, and P. P. Schneider. The Description Logic
Handbook. Cambridge University Press, 2002.

24. T.Berners-Lee, J.Hendler, and O.Lassila. The Semantic Web. Scientific American,
284(5):34–43, 2001.

25. H. Chalupsky. OntoMorph: A translation system for symbolic logic. In Proc. Int’l.
Con. on Principles of Knowledge Representation and Reasoning, pages 471–482,
San Francisco, 2000. Morgan Kaufmann.

26. M. Dell’Erba, O. Fodor, F. Ricci, and H. Werthner. Harmonise: A Solution for
Data Interoperability. In I3E 2002, 2002.

27. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between
ontologies on the semantic web. In Proceedings of the World-Wide Web Conference
(WWW-2002), 2002.

28. D. Dou, D. McDermott, and P. Qi. Ontology Transaltion by Ontol-
ogy Merging and Automated Reasoning. In Proceedings of EKAW02 Work-
shop on Ontologies for Multi-Agent Systems, 2002. Available at http://cs-
www.cs.yale.edu/homes/dvm/papers/DouMcDermottQi02.ps

29. Dejing Dou, Drew McDermott, and Peishen Qi. Ontology Translation on the
Semantic Web. In Proceedings of International Conference on Ontologies, Databases
and Application of SEmantics (ODBASE) 2003, pages 952–969.

30. M. R. Genesereth, A. Keller, and O. Duschka. Infomaster: An information integra-
tion system. In Proc 97 ACM SIGMOD International Conference on Management
of Data, pages 539–542, 1997.

31. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs:
Combining logic programs with description logic. In Proc. International World
Wide Web Conference, 2003.

32. T. Gruber. Ontolingua: A Translation Approach to Providing Portable Ontology
Specifications. Knowledge Acquisition, 5(2):199–200, 1993.

33. Jeff Heflin and James Hendler Searching the web with SHOE. In Artificial In-
telligence for Web Search. Papers from the AAAI Workshop. WS-00-01, pp. 35–40.
Menlo Park, CA: AAAI Press. 2000

34. Douglas B. Lenat and R.V. Guha Building Large Knowledge-Based Systems. Read-
ing: Addison-Wesley 1990

Ontology Translation on the Semantic Web 57

35. J. Madhavan, P. A. Bernstein, P. Domingos, and A. Halevy. Representing and
Reasoning about Mappings between Domain Models. In Proc. AAAI 2002, 2002.

36. A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA - A Mapping Framework
for Distributed Ontologies. In Proceedings of the 13th International Conference,
EKAW 2002.

37. D. McDermott. The Planning Domain Definition Language Manual. Technical
Report 1165, Yale Computer Science, 1998. (CVC Report 98-003).

38. D. McDermott, M. Burstein, and D. Smith. Overcoming ontology mismatches in
transactions with self-describing agents. In Proc. Semantic Web Working Sympo-
sium, pages 285–302, 2001.

39. D. McDermott and D. Dou. Representing Disjunction and Quantifiers in Rdf. In
Proceedings of International Semantic Web Conference 2002, pages 250–263, 2002.

40. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An Environment for Merging
and Testing Large Ontologies. In Proceedings of the Seventh International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR2000), 2000.

41. E. Mena, A. Illarramandi, V. Kashyap, and A. Sheth OBSERVER: An approach
for query processing in global information systems based on interoperation across
pre-existing ontologies. In Int. J. Distributed and Parallel Database (DAPD) 8(2),
pp. 223–271

42. P. Mitra, G. Wiederhold, and M. Kersten. A graph-oriented model for articulation
of ontology interdependencies. In Proceedings of Conference on Extending Database
Technology (EDBT 2000), 2000.

43. N. F. Noy and M. A. Musen. Prompt: Algorithm and tool for automated ontology
merging and alignment. In Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI-2000), 2000.

44. Rachel Pottinger and Alon Levy. A scalable algorithm for answering queries using
views. In Proceedings of the 26th VLDB Conference, 2000.

45. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,
Inc, 1995.

46. L. Serafini, P. Bouquet, B. Magnini, and S. Zanobini. An algorithm for matching
contextualized schemas via sat. In Proceedings of CONTEXT’03.

47. Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Con-
cepts, 4th Edition. McGraw-Hill Companies, 2001.

48. Larry Wos. The Automation of Reasoning: An Experimenter’s Notebook with Otter
Tutorial. Academic Press, 1996.

Compound Term Composition Algebra:

The Semantics

Yannis Tzitzikas1�, Anastasia Analyti2, and Nicolas Spyratos3

1 Institut d’Informatique, F.U.N.D.P. (University of Namur), Belgium
ytz@info.fundp.ac.be

2 Institute of Computer Science, FORTH, Heraklion, Greece
analyti@ics.forth.gr

3 Laboratoire de Recherche en Informatique, Universite de Paris-Sud, France
spyratos@lri.fr

Abstract. The Compound Term Composition Algebra (CTCA) is an al-
gebra with four algebraic operators, whose composition can be used to
specify the meaningful (valid) compound terms (conjunctions of terms)
in a given faceted taxonomy in an efficient and flexible manner. The “pos-
itive” operations allow the derivation of valid compound terms through
the declaration of a small set of valid compound terms. The “negative”
operations allow the derivation of valid compound terms through the
declaration of a small set of invalid compound terms. In this paper,
we formally define the model-theoretic semantics of the operations and
the closed-world assumptions adopted in each operation. We prove that
CTCA is monotonic with respect to both valid and invalid compound
terms, meaning that the valid and invalid compound terms of a subex-
pression are not invalidated by a larger expression. We show that CTCA
cannot be directly represented in Description Logics. However, we show
how we could design a metasystem on top of Description Logics in order
to implement this algebra.

Keywords: Faceted Taxonomies, Semantics, Description Logics.

1 Introduction

A faceted taxonomy is a set of taxonomies, each describing a given domain from
a different aspect, or facet (for more about faceted classification and analysis
see [12, 6, 18, 7, 9, 10, 8]). Having a faceted taxonomy, the indexing of domain
objects is done through conjunctive combinations of terms from the facets, called
compound terms. Faceted taxonomies are used in Web Catalogs [11], Libraries [8],
Software Repositories [9, 10], and several others application domains. Current
interest in faceted taxonomies is also indicated by several recent or ongoing
projects (like FATKS4, FACET5, FLAMENGO6) and the emergence of XFML
� Part of this work was done while the author was an ERCIM fellow at the VTT

Technical Research Centre of Finland.
4 http://www.ucl.ac.uk/fatks/database.htm
5 http://www.glam.ac.uk/soc/research/hypermedia/facet proj/index.php
6 http://bailando.sims.berkeley.edu/flamenco.html

S. Spaccapietra et al. (Eds.): Journal on Data Semantics II, LNCS 3360, pp. 58–84, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Compound Term Composition Algebra: The Semantics 59

[1] (Core-eXchangeable Faceted Metadata Language) a markup language for
applying the faceted classification paradigm on the Web.

For example, assume that the domain of interest is a set of hotel Web pages
in Greece, and suppose that we want to provide access to these pages according
to the Location of the hotels and the Sports facilities they offer. Figure 1 shows
these two facets. Each object is described using a compound term. For example,
a hotel in Crete providing sea ski and wind-surfing facilities would be described
by the compound term {Crete, SeaSki, Windsurfing}.

SeaSports

Sports

SeaSki SnowBoard

Sports

Windsurfing SnowSki

WinterSports

Location

Mainland

Macedonia Ipiros

Islands

Cephallonia Crete

Greece

Fig. 1. Two facets for indexing hotel Web pages

Faceted taxonomies carry a number of well known advantages over single
hierarchies in terms of building and maintaining them, as well as using them in
multicriteria indexing. For instance, assume that the Web consists of 1 billion
pages and suppose we want to create terms that allow partitioning the pages of
the Web in blocks of 10 pages as it is illustrated in Figure 2. For doing so we
need at least 100 millions (108) different terms, assuming each page is indexed
by one term. If we want these terms to be the leaves of a complete balanced
decimal tree, then this tree would have: 111,111,111 terms in total. By adopting
a faceted taxonomy we can obtain the same discrimination capability with much
fewer terms. For example, consider 4 facets, each one having 100 leaf terms.
The number of all combinations of these leaf terms, with one term from each
facet, equals 100 millions. If each facet is a complete balanced decimal tree, then
the entire faceted taxonomy would have: (100 + 10 + 1) x 4 = 444 terms in
total. We can obtain the same discrimination capability with even fewer terms!
For example, we can have 108 different combinations by adopting 8 facets, each
one having 10 leaf terms. In this case, the entire faceted taxonomy has only
88 terms! Notice the tremendous difference between 111,111,111 and 88. It is
therefore evident that a faceted taxonomy has several advantages by comparison
to a single taxonomy (of the kind of Yahoo! or ODP), such as conceptual clarity,
compactness and scalability (e.g. see [10]). A drawback, however, is the cost of
avoiding invalid combinations, i.e. compound terms that do not apply to any
object in the domain. For example, the compound term {Crete, SnowBoard} is
an invalid compound term, as there are no hotels in Crete offering snow-board
facilities (because Crete never has enough snow). These meaningless or invalid
compound terms may give rise to problems and errors during object indexing.

60 Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos

(b)

100 100 100 100

blocks of 10 pages

indexing terms
100 million

x x x 400 terms

total: 444 terms

1 billion pages

complete and
balanced decimal tree

blocks of 10 pages

indexing terms
100 million

total: 111.111.111 terms

1 billion pages

(a)

Fig. 2. The benefits of using faceted instead of non-faceted taxonomies

In [13], we proposed the Compound Term Composition Algebra (CTCA),
an algebra that allows the efficient and flexible specification of the valid com-
pound terms over a faceted taxonomy. Having defined the set of valid compound
terms, a navigation tree can be derived dynamically, whose nodes correspond
to valid compound terms, only. Such a navigation tree can aid object index-
ing and browsing, and can prevent some of the indexing errors that may oc-
cur in an open and collaborative environment like the Web. Following this ap-
proach, given a faceted taxonomy, one can use an algebraic expression to define
the desired set of compound terms. In each algebraic operation, the designer
has to declare either a small set of valid compound terms from which other
valid compound terms are inferred, or a small set of invalid compound terms
from which other invalid compound terms are inferred. Then, a closed-world
assumption is adopted for the rest of the compound terms in the range of the
operation. For example, if a user declares in a positive operation that the com-
pound term {Crete, SeaSki} is valid then it is inferred that the compound term
{Crete, SeaSports} is also valid. If a user declares in a negative operation that
the compound term {Crete, WinterSports} is invalid then it is inferred that the
compound term {Crete, SnowBoard} is also invalid. In our example, this means
that the designer can specify all valid compound terms of the faceted taxonomy
by providing a relatively small number of (valid or invalid) compound terms.
This is an important feature as it minimizes the effort needed by the designer.

From an application point of view, an important remark is that there is
no need to store the set of valid compound terms that are defined by an ex-
pression, as an inference mechanism (given in [13]) can check whether a com-
pound term belongs to the set of compound terms defined by an expression
in polynomial time. So, only the faceted taxonomy and the expression have
to be stored. Another final remark, is that the recently emerged markup lan-
guage XFML+CAMEL (Compound term composition Algebraically-Motivated
Expression Language) [2], allows publishing and exchanging faceted taxonomies
and expressions of CTCA in an XML format. An authoring system based on
CTCA has just been developed by VTT and Helsinki University of Technology
(HUT), under the name FASTAXON [14].

In this paper, we emphasize on the semantics of the algebra. Specifically, we
formally define the model-theoretic semantics of the operations and the closed-

Compound Term Composition Algebra: The Semantics 61

world assumptions adopted in each operation. First, intermediate semantics are
defined for the particular operations, and then intermediate semantics are syn-
thesized to define the semantics of the complete algebraic operation. Based on
these, we define the models of an algebraic expression, and we prove that ev-
ery well-formed algebraic expression is satisfiable. We also prove that CTCA is
monotonic with respect to both valid and invalid compound terms, meaning that
the valid and invalid compound terms of a subexpression are not invalidated by
a larger expression. The importance of this property is demonstrated through
an example.

We also show that CTCA cannot be directly represented in Description Log-
ics. However we show how a meta-system (on top of a Description Logics-based
system) could be designed in order to implement CTCA.

The remaining of this paper is organized as follows: Section 2 describes the
algebra, and justifies the definition of a well-formed algebraic expression based
on the monotonicity property. Section 3 defines the model-theoretic semantics
of the algebra and proves monotonicity. Section 4 compares the approach with
Description Logics. Finally, Section 5 concludes the paper and discusses applica-
tions. Proofs of all propositions are given in Appendix A. Appendix B illustrates
the application of the algebra and the benefits of its monotonic nature by an
example. A table of symbols is given in Appendix C.

2 The Compound Term Composition Algebra

In this section, we present in brief the Compound Term Composition Algebra,
defined in [13]. For more explanations, and examples the reader should refer to
that article.

A terminology is a finite set of names, called terms. A taxonomy is a pair
(T ,≤), where T is a terminology and ≤ is a reflexive and transitive relation over
T , called subsumption.

A compound term over T is any subset of T . For example, the following
sets of terms are compound terms over the terminology Sports of Figure 1:
s1 = {SeaSki, Windsurfing}, s2 = {SeaSports}, and s3 = ∅.

A compound terminology S over T is any set of compound terms that contains
the compound term ∅.

The set of all compound terms over T can be ordered using the compound
ordering over T , defined as: s � s′ iff ∀t′ ∈ s′ ∃t ∈ s such that t ≤ t′.

That is, s � s′ iff s contains a narrower term for every term of s′. In addi-
tion, s may contain terms not present in s′. Roughly, s � s′ means that s car-
ries more specific information than s′. For example, {SeaSki, Windsurfing} �
{SeaSports} � ∅.

We say that two compound terms s, s′ are equivalent iff s � s′ and s′ � s.
For example, {SeaSki, SeaSports} and {SeaSki} are equivalent. Intuitively,
equivalent compound terms carry the same information.

62 Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos

Definition 1. A compound taxonomy over T is a pair C = (S,�), where S
is a compound terminology over T , and � is the compound ordering over T
restricted to S.

Let P (T) be the set of all compound terms over T (i.e. the powerset of T).
Clearly, (P (T),�) is a compound taxonomy over T .

Let s be a compound term. The broader and the narrower compound terms
of s are defined as follows:

Br(s) = {s′ ∈ P (T) | s � s′}
Nr(s) = {s′ ∈ P (T) | s′ � s}

Let S be a compound terminology over T . The broader and the narrower com-
pound terms of S are defined as follows:

Br(S) = ∪{Br(s) | s ∈ S}
Nr(S) = ∪{Nr(s) | s ∈ S}

One way of designing a taxonomy is by identifying a number of different
aspects of the domain of interest and then designing one taxonomy per aspect.
As a result we obtain a set of taxonomies called facets. Given a set of facets we
can define a faceted taxonomy.

Definition 2. Let {F1, ..., Fk} be a finite set of taxonomies, where Fi = (T i,≤i

), and assume that the terminologies T 1, ... ,T k are pairwise disjoint. Then the
pair F = (T ,≤), where

T =
⋃k

i=1T i and ≤ =
⋃k

i=1 ≤i,

is a taxonomy which we shall call the faceted taxonomy generated by {F1, ..., Fk}.
We shall call the taxonomies F1, ..., Fk the facets of F .

Clearly, all definitions introduced so far apply also to (T ,≤). For example,
the set S = {{Greece}, {Sports}, {SeaSports}, {Greece, Sports}, {Greece,
SeaSports}, ∅} is a compound terminology over the terminology T of the faceted
taxonomy shown in Figure 1. Additionally, the pair (S,�) is a compound tax-
onomy over T .

Let F= (T ,≤) be the faceted taxonomy generated by a given set of facets
{F1, ..., Fk}. The problem is that F does not itself specify which compound
terms, i.e. which elements of P (T), are valid (i.e. meaningful) and which are not
(i.e. meaningless). To tackle this problem, we introduce an algebra for defining
a compound terminology over T (i.e. a subset of P (T)) which consists of the
valid compound terms.

Compound Term Composition Algebra: The Semantics 63

2.1 Algebraic Operations

For defining the desired compound taxonomy the designer has to formulate an
algebraic expression e, using four operations, namely:

– plus-product,
– minus-product,
– plus-self-product, and
– minus-self-product.

Let us now see which are the initial operands of these operations. To each facet
terminology T i we associate a compound terminology, denoted by Ti, that we
call the basic compound terminology of T i, given by:

Ti = ∪{ Br({t}) | t ∈ T i} (1)

So the initial operands (or “building blocks”) of the algebraic operations are
the basic compound terminologies {T1, .., Tk}. Let us now explain the role of
”Br” in the formula (1). We by default assume that every individual term of a
taxonomy is valid (meaningful), i.e. there are real-world objects (at least one)
to which this term applies. It follows easily that all compound terms in Br({t})
are valid too. We used Br({t}) instead of just {t} in order to capture the case
where T i is not a tree. For example, suppose three terms a, b and c such that
a ≤ b and a ≤ c. It follows that the compound term {b, c} is certainly valid as
it subsumes {a}. Formula (1) captures this case, as {b, c} ∈ Br({a}). Of course,
if T i had a tree structure then we could omit ”Br” and rewrite formula (1) as:
Ti = ∪{ {t} | t ∈ T i} ∪ {∅}.

Let S be the set of all compound terminologies over T . Before defining the
four algebraic operations, we shall first define an auxiliary n-ary operation ⊕
over S, called product. This operation results in an ”unqualified” compound
terminology whose compound terms are all possible combinations of compound
terms from its operands. Specifically, if S1, ..., Sn are compound terminologies,
then:

S1 ⊕ ...⊕ Sn = {s1 ∪ ... ∪ sn | si ∈ Si}

Now plus-product and minus-product are two ”variations” of the ⊕ opera-
tion. Each of these two operations has an extra parameter denoted by P or N ,
respectively. The set P is a set of compound terms that the designer consid-
ers as valid. On the other hand, the set N is a set of compound terms that
the designer considers as invalid. These parameters are declared by the designer
(domain expert).

To proceed and explain the role of these parameters we need to distinguish
what we shall call genuine compound terms. Intuitively, a genuine compound
term combines non-empty compound terms from more than one compound ter-
minology.

64 Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos

Definition 3. The set of genuine compound terms over a set of compound
terminologies S1, ..., Sn, denoted by GS1,...,Sn , is defined as follows:

GS1,...,Sn = S1 ⊕ ...⊕ Sn −
n⋃

i=1

Si

For example if
S1 = {{Greece}, {Islands}, ∅},
S2 = {{Sports}, {WinterSports}, ∅}, and
S3 = {{Pensions}, {Hotels}, ∅}, then

{Greece, WinterSports, Hotels} ∈ GS1,S2,S3 ,

{WinterSports, Hotels} ∈ GS1,S2,S3 , but
{Hotels} �∈ GS1,S2,S3

One can easily see, that as we are interested in characterizing the validity
of compound terms, the parameters P and N must contain genuine compound
terms only.

We can now define precisely the plus-product operation, ⊕P .

Definition 4. Let S1, ..., Sn be compound terminologies and P ⊆ GS1,...,Sn.
The plus-product of S1, ..., Sn with respect to P , denoted by ⊕P (S1, ..., Sn), is
defined as follows:

⊕P (S1, ...Sn) = S1 ∪ ... ∪ Sn ∪ Br(P)

This operation results in a compound terminology consisting of the com-
pound terms of the initial compound terminologies, plus the compound terms
which are broader than an element of P . This is because, if a compound term p
is valid then all compound terms in Br(p) are also valid.

For any parameter P , it holds:
⋃n

i=1 Si ⊆ ⊕P (S1, ..., Sn) ⊆ S1 ⊕ ...⊕ Sn.

Let us now define precisely the minus-product operation, �N .

Definition 5. Let S1, ..., Sn be compound taxonomies and N ⊆ GS1,...,Sn. The
minus-product of S1, ..., Sn with respect to N , denoted by �N (S1, ..., Sn), is
defined as follows:

�N(S1, ...Sn) = S1 ⊕ ...⊕ Sn −Nr(N)

This operation results in a compound terminology consisting of all compound
terms in the product of the initial compound terminologies, minus all compound
terms which are narrower than an element of N . This is because, if a compound
term n is invalid then every compound term in Nr(n) is invalid.

For any parameter N , it holds:
⋃n

i=1 Si ⊆ �N (S1, ..., Sn) ⊆ S1 ⊕ ...⊕ Sn.

For example, consider the compound terminologies S and S′ shown in the
left part of Figure 3, and suppose that we want to define a compound terminol-
ogy that does not contain the compound terms {Islands, WinterSports} and

Compound Term Composition Algebra: The Semantics 65

{Islands, SnowSki}, because they are invalid. For this purpose, we can use ei-
ther a plus-product or a minus-product operation.

Specifically, we can use a plus-product operation, ⊕P (S, S′), where
P = {{Islands, Seasports}, {Greece, SnowSki}}. The compound taxonomy
defined by this operation is shown in the right part of Figure 3. In this fig-
ure we enclose in squares the elements of P . We see that the compound ter-
minology ⊕P (S, S′) contains the compound term s = {Greece, Sports}, as
s ∈ Br({Islands, SeaSports}). However, it does not contain the compound
terms {Islands, WinterSports} and {Islands, SnowSki}, as they do not be-
long to S ∪ S′ ∪Br(P).

{SeaSports}

(S,S’)S’S

{SnowSki}

P

{WinterSports}{SeaSports}

{WinterSports}

{Sports}

P

{Islands}

{Sports}

{SnowSki}

{Greece,Sports}

{Greece,SeaSports}{Islands,Sports}

{Islands,SeaSports}

{Greece}

{Islands}

{Greece,WinterSports}

{Greece}

{Greece,SnowSki}

 ={{Islands,SeaSports},
{Greece, SnowSki}}

Fig. 3. An example of a plus-product, ⊕P , operation

Alternatively, we can obtain the compound taxonomy shown at the right
part of Figure 3 by using a minus-product operation, i.e. �N(S, S′), with N =
{{Islands, WinterSports}}. The result does not contain the compound terms
{Islands, WinterSports} and {Islands, SnowSki}, as they are elements of
Nr(N).

The two operations introduced so far allow defining a compound terminology
which consists of compound terms that contain at most one compound term from
each basic compound terminology. However, in general there may exist valid
compound terms that contain more than one term from the same facet (multiple
classification within one facet). To capture such cases, and specify which of these
compound terms are valid and which are not, the algebra supports another two
operations, namely, plus-self-product and minus-self-product.

Again, we shall start from an auxiliary operation called self-product. Self-
product,

∗
⊕, is a unary operation which gives all possible compound terms of one

facet. The self-product of Ti is defined as:
∗
⊕ (Ti) = P (T i).

Now plus-self-product and minus-self-product are two ”variations” of the
∗
⊕

self-product operation. Each of these two operations has an extra parameter
denoted by P or N , respectively. Again, the notion of genuine compound terms

66 Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos

is also necessary here. The set of genuine compound terms over a basic compound
terminology Ti is defined as:

GTi =
∗
⊕ (Ti)− Ti

Now we define precisely the plus-self-product operation,
∗
⊕P .

Definition 6. Let Ti be a basic compound terminology and P ⊆ GTi . The plus-

self-product of Ti with respect to P , denoted by
∗
⊕P (Ti), is defined as follows:

∗
⊕P (Ti) = Ti ∪Br(P)

This operation results in a compound terminology consisting of the com-
pound terms of the initial basic compound terminology, plus all compound terms
which are broader than an element of P .

For any parameter P , it holds: Ti ⊆
∗
⊕P (Ti) ⊆

∗
⊕ (Ti)

Now minus-self-product operation,
∗
�N , is defined as:

Definition 7. Let Ti be a basic compound terminology and N ⊆ GTi . The

minus-self-product of Ti with respect to N , denoted by
∗
�N (Ti), is defined as

follows: ∗
�N (Ti) =

∗
⊕ (Ti)−Nr(N)

This operation results in a compound terminology consisting of all compound
terms in the self-product of Ti, minus the compound terms which are narrower
than an element in N .

For any parameter N it holds: Ti ⊆
∗
�N (Ti) ⊆

∗
⊕ Ti

Table 1 gives the definition of each operation of the algebra.

Operation e Se arity

product S1 ⊕ ... ⊕ Sn { s1 ∪ ... ∪ sn | si ∈ Si} n-ary

plus-product ⊕P (S1, ...Sn) S1 ∪ ... ∪ Sn ∪ Br(P) n-ary

minus-product N (S1, ...Sn) S1 ⊕ ... ⊕ Sn − Nr(N) n-ary

self-product
∗
⊕ (Ti) P (T i) unary

plus-self-product
∗
⊕P (Ti) Ti ∪ Br(P) unary

minus-self-product
∗
N (Ti)

∗
⊕ (Ti) − Nr(N) unary

Table 1. The operations of the Compound Term Composition Algebra

Compound Term Composition Algebra: The Semantics 67

2.2 Algebraic Expressions

For defining the desired compound taxonomy, the designer has to formulate an
expression e, where an expression is defined as follows:

Definition 8. An expression over a set of facets {F1, ..., Fk} is defined according
to the following grammar:

e ::= ⊕P (e, ..., e) | �N (e, ..., e) |
∗
⊕P Ti |

∗
�N Ti | Ti

The outcome of the evaluation of an expression e is denoted by Se and is called
the compound terminology of e. In addition, (Se,�) is called the compound tax-
onomy of e.

Let T e be the union of the terminologies of the facets appearing in an ex-
pression e. The expression e actually partitions the set P (T e) into two sets:

(a) the set of valid compound terms, Se, and
(b) the set of invalid compound terms P (T e)− Se

Now well-formed expressions are defined as follows:

Definition 9. An expression e is well-formed iff:

(i) each basic compound terminology Ti appears at most once in e,
(ii) each parameter P that appears in e, is a subset of the associated set of

genuine compound terms, e.g. if e = ⊕P (e1, e2) then it should be P ⊆
GSe1 ,Se2

, and
(iii) each parameter N that appears in e, is also a subset of the associated set

of genuine compound terms, e.g. if e =
∗
�N (Ti) then it should be N ⊆ GTi .

For example, the expression (T1⊕P T2)�NT1 is not well-formed, as T1 appears
twice in the expression.

Constraints (i), (ii), and (iii) ensure that the evaluation of an expression is
monotonic, meaning that the valid and invalid compound terms of an expression
e increase as the length of e increases7 (in other words, there are no conflicts).
For example, if we omit constraint (i) then an invalid compound term accord-
ing to an expression T1 ⊕P T2 could be valid according to a larger expression
(T1 ⊕P T2) ⊕P ′ T1. If we omit constraint (ii) then an invalid compound term
according to an expression T1 ⊕P1 T2 could be valid according to a larger ex-
pression (T1⊕P1 T2)⊕P2 T3. Additionally, if we omit constraint (iii) then a valid
compound term according to an expression T1 ⊕P T2 could be invalid according
to a larger expression (T1 ⊕P T2)�N T3.

This monotonic behaviour in the evaluation of a well-formed expression re-
sults in a number of useful properties. Specifically, due to their monotonicity,

7 Proof of this property is given in Section 3.

68 Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos

well-formed expressions can be formulated in a systematic, gradual manner (in-
termediate results of subexpressions are not invalidated by larger expressions).
Appendix B offers examples of the algebra. The benefits of monotonicity are also
demonstrated there.

In the rest of the paper, we assume that expressions are well-formed. In [13],
we presented the algorithm IsV alid(e, s) that checks the validity of a compound
term s according to a well-formed expression e in O(|T |2 ∗ |s| ∗ |P ∪ N|) time,
where P denotes the union of all P parameters and N denotes the union of all
N parameters appearing in e. Polynomial is also the time needed for checking if
an expression e is well-formed.

Let us define the size of an expression e as follows: size(e) = |P ∪N|. Obvi-
ously, reducing the size of e is desirable, as both the storage space requirements
of e and the time for checking compound term validity are reduced. It is easy to
see that if we replace each parameter P of e with minimal�(P) and each param-
eter N of e with maximal�(N), we derive an expression e′ such that Se = Se′

and size(e′) ≤ size(e). Yet, e′ may not be the shortest expression with these
properties. The problem of finding the shortest expression e′ such that Se = Se′

is treated in [16].

3 Semantic Interpretation

At first we shall give a model-theoretic interpretation to faceted taxonomies and
to compound taxonomies. Using this framework, we shall formally define the
validity of a compound term. In the sequent, we will define the models of the
compound taxonomies that satisfy a well-formed algebraic expression. At that
point, it will become evident that the algebraic operations and their parameters
actually pose constraints to the models of the compound taxonomy (P (T),�).
Moreover, we will show that the operations as defined in Section 2, are also
justified by the semantic interpretation of this section.

We conceptualize the world as a set of objects, that is, we assume an arbitrary
domain of discourse and a corresponding set of objects Obj. A typical example
of such a domain is a set of Web pages. The only constraint that we impose on
the set Obj is that it must be a denumerable set.

The set of objects described by a term is the interpretation of that term.

Definition 10. Given a terminology T , we call interpretation of T over Obj
any function I :T → 2Obj .

Intuitively, the interpretation I(t) of a term t is the set of objects to which
the term t is correctly applied. In our discussion the set Obj will be usually
understood from the context. So, we shall often say simply “an interpretation”
instead of “an interpretation over Obj”. Interpretation, as defined above, assigns
to a term denotational or extensional meaning [19].

Definition 11. An interpretation I of T is a model of a taxonomy (T ,≤),
if for each t, t′ ∈ T : if t ≤ t′ then I(t) ⊆ I(t′).

Compound Term Composition Algebra: The Semantics 69

Now, any interpretation I of T can be extended to an interpretation Î of
P (T) as follows:

Î({t1, ..., tn}) = I(t1) ∩ I(t2) ∩ ... ∩ I(tn)

Definition 12. Let (T ,≤) be a taxonomy. An interpretation Î of P (T) is a
model of (P (T),�), if for each s, s′ ∈ P (T): if s � s′ then Î(s) ⊆ Î(s′).

Proposition 1. Let S be a compound taxonomy over a taxonomy T , and let s
and s′ be two elements of S. It holds:

s � s′ iff Î(s) ⊆ Î(s′) in every model I of (T ,≤)

We can see that the compound ordering � is also justified semantically (it
coincides with extensional subsumption).

From the above, it easily follows that an interpretation I is a model of (T ,≤)
iff Î is a model of (P (T),�).

For brevity hereafter we shall denote by I both I and Î. Additionally, in the
following, by model I we refer to a model I of (T ,≤).

For describing the semantics of compound terminologies that are defined by
algebraic expressions, we shall equate validity with non-empty interpretation and
invalidity with empty interpretation. For simplicity, we consider only expressions
of the form e⊕P e′ and e�N e′, with no plus-self-product and minus-self-product
operations. We will define the valid and invalid compound terms of an expression
e, denoted by V C(e) and IC(e), recursively starting by V C(Ti) = Ti.

At first, we define the valid genuine compound terms of e op e′ (denoted by
V G(e op e′)) and the invalid genuine compound terms of e op e′ (denoted by
IG(e op e′)), based on V C(e) and V C(e′). Intuitively, we first define the validity
of the genuine compound terms over V C(e) and V C(e′).

The valid genuine compound terms of e⊕P e′ are defined as follows:

V G(e⊕P e′) = { s ∈ GV C(e),V C(e′) |
I(s) �= ∅ in every model I such that: I(s′) �= ∅, ∀s′ ∈ P}

Now by adopting a closed-world assumption for the invalid genuine compound
terms, we assume that all elements of GSe,Se′ − V G(e ⊕P e′) are invalid. Thus
we write:

IG(e⊕P e′) = GV C(e),V C(e′) − V G(e⊕P e′)

The following proposition holds:

Proposition 2. V G(e⊕P e′) = Br(P) ∩GV C(e),V C(e′)

70 Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos

Below we define the invalid genuine compound terms of e�N e′:

IG(e�N e′) = { s ∈ GV C(e),V C(e′) |
I(s) = ∅ in every model I such that: I(s′) = ∅, ∀s′ ∈ N}

Now we again adopt a closed-world assumption for the valid genuine com-
pound terms, specifically we assume that all elements of GV C(e),V C(e′)−IG(e�N

e′) are valid. Thus we write:

V G(e�N e′) = GV C(e),V C(e′) − IG(e�N e′)

The following proposition holds:

Proposition 3. IG(e�N e′) = Nr(N) ∩GV C(e),V C(e′)

Until now, for every operation e op e′ we partitioned the set GV C(e),V C(e′) to
the sets V G(e op e′) and IG(e op e′). Let T e denote the union of the terminolo-
gies of the facets that appear in e. Now for any well-formed expression e, we will
partition the elements of the entire P (T e) into the set of valid compound terms,
V C(e), and the set of invalid compound terms, IC(e). We define8:

V C(Ti) = Ti, for i = 1, ...k

V C(e op e′) = V G(e op e′) ∪ V C(e) ∪ V C(e′)
IC(e) = P (T e)− V C(e)

Clearly, the sets V C(e) and IC(e) constitute a partition of P (T e).

Definition 13. Let e be a well-formed expression, and let I be a model of
(T ,≤). We say that I satisfies e if:

(1) ∀ s ∈ V C(e), I(s) �= ∅, and
(2) ∀ s ∈ IC(e), I(s) = ∅.

The following proposition expresses that every expression e is satisfiable.

Proposition 4. Let e be a well-formed expression. There always exists a model
I of (T ,≤) that satisfies e.

The following proposition expresses that the compound taxonomy Se of an
algebraic expression e (as computed from our operations) consists of exactly
those compound terms which are valid according to the semantic interpretation
that we described in this section.

Proposition 5. Let e be a well-formed expression. It holds:

V C(e) = Se and IC(e) = P (T e)− Se

8 Note that in the definition, there is double recursion.

Compound Term Composition Algebra: The Semantics 71

The following proposition gives a very important property of our theory,
that is, intermediate results of subexpressions are not invalidated by larger ex-
pressions. Thus, expressions can be formed in a constructive, gradual manner,
allowing use of intermediate results.

Proposition 6. Let e be a well-formed expression and e′ be a subexpression of
e. Then, it holds

V C(e′) ⊆ V C(e) and IC(e′) ⊆ IC(e)

To see the significance of this proposition, let {F1, ..., Fk} be the facets of a
faceted taxonomy and let e′ be an expression that defines the current desired
compound taxonomy. Assume that now the designer adds some new facets of
interest. Then, he has only to extend (and not to rewrite) e′ with a subexpression
e′′ such that the new expression, e = e′ op e′′, defines the new desired compound
taxonomy (see the examples of Appendix B).

The following proposition expresses that the valid and invalid genuine com-
pound terms of a subexpression of an expression e are indeed valid and invalid
compound terms, respectively.

Proposition 7. Let e be a well-formed expression and e1 op e2 be a subexpres-
sion of e. Then, it holds

V G(e1 op e2) ⊆ V C(e) and IG(e1 op e2) ⊆ IC(e)

From the above proposition and propositions 2 and 3, it easily follows that
for any parameter P and N of e, it holds: P ⊆ V C(e) and N ⊆ IC(e).

In Section 2, we informally indicated that if a compound term s is valid then
every compound term in Br(s) is also valid. Additionally, if a compound term
s is invalid then every compound term in Nr(s) is also invalid. This property is
formally proved in the following proposition.

Proposition 8. Let e be a well-formed expression. It holds:

Br(V C(e)) = V C(e) and Nr(IC(e)) = IC(e)

The semantic interpretation that we described can be extended in a straight-
forward manner, so as to also capture the plus-self-product operation and the
minus-self-product operation.

4 Comparison with Description Logics

In this section we will investigate whether we can represent the compound tax-
onomies that are defined by CTCA expressions, in Description Logics (DL) [5].
This involves finding a method for representing in DL, taxonomies and the con-
straints that are imposed by the CTCA expressions, in a way that allows reducing
compound term validity checking to the semantics (and inference rules) of DL.

72 Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos

Recall that any Description Logic (DL) is a fragment of First Order Logic
(FOL). In particular, any (basic) DL is a subset of the function-free FOL using at
most three variable names. In DL, a knowledge base, also referred as a DL theory,
denoted by Σ, is formed by two components: the intensional one, called TBox,
(denoted by TB), and the extensional one, called ABox (denoted by AB), i.e.
Σ = (TB, AB). The first is a general schema concerning the classes of individuals
to be represented, their general properties and mutual relationships. The latter
is a (partial) instantiation of this schema, containing assertions relating either
individuals to classes, or individuals to each other. Specifically, the language
used is composed by symbols denoting concept names and individual names9.
Besides the above symbols, the alphabet includes a number of constructors that
permit the formation of concept expressions. In our case, we only need to use
the bottom concept ⊥ and the conjunctive constructor � . Now a DL knowledge
base comprises expressions belonging to one of the following two categories where
C, C1, C2 stand for concepts, and a for individual constants:

– C(a), called concept assertions, asserting that a is an instance of C;
– C1 � C2, asserting that C1 is more specific than C2.

The set of concept assertions constitute the ABox of Σ, while the latter, which
are called concept axioms, constitute the TBox of Σ.

The semantics is specified through the notion of interpretation. An interpre-
tation I is a pair I = (ΔI , ·I) consisting of a non-empty set ΔI (called the
domain) and of an interpretation function ·I . The latter maps different individ-
ual constants into different elements of ΔI and primitive concepts into subsets
of ΔI . The interpretation of complex concepts is defined by structural induc-
tion, in our case by the rules: �I = ΔI , ⊥I= ∅ and (C1 � C2)I = CI

1 ∩ CI
2 .

Semantically, the assertion C(a) is satisfied by an interpretation I iff aI ∈ CI .
An axiom C1 � C2 is satisfied by an interpretation I iff C1

I ⊆ C2
I . An inter-

pretation I satisfies (is a model of) a KB Σ iff I satisfies each axiom in TB and
each assertion in AB. A KB Σ entails an assertion α (written Σ |= α) iff every
model of Σ satisfies α.

One can easily see that a faceted taxonomy F = (T ,≤) can be expressed as
a TBox containing one primitive concept t for each term t ∈ T , and one concept
axiom t � t′ for each relationship t ≤ t′ of the taxonomy.

Recall that we have equated compound term validity with non-empty in-
terpretation and compound term invalidity with empty interpretation. One can
easily see that invalidity reduces quite straightforwardly to unsatisfiability of DL.
On the other hand, in order to express that each term t of a taxonomy is valid,
we will create an ABox that contains one concept assertion t(at), where at is a
new individual constant (different terms are associated with different constants,
i.e. if t �= t′ then at �= at′). If (T,≤) is a taxonomy we shall use ΣT to denote

9 We skip roles as they are not needed for the problem at hand.

Compound Term Composition Algebra: The Semantics 73

the DL theory that is derived according to the above. For example, if (T,≤) =
({t1, t2, t3}, {t2 ≤ t1, t3 ≤ t1}), then ΣT = {t2 � t1, t3 � t1, t1(1), t2(2), t3(3)}

We will now generalize, and describe how we can construct a DL theory Σe

for every well-formed expression e of the CTCA10. The method is described in
Table 2. At first note that a compound term s = {t1, ..., tn} in the DL framework
corresponds to the conjunctively defined concept ds = t1 � ... � tn.

In the case of a plus-product operation, for each p = {t1, ..., tn} ∈ P we
derive the concept assertion (t1 � ...�tn)(ap), where ap is a fresh new constant.

Now in the case of a minus-product operation, for each {t1, ..., tn} ∈ N we
derive the concept axiom t1 � ... � tn � ⊥.

e Σe

Ti { t(at) | for each t ∈T i} ∪
{ t � t′ | for each t, t′ ∈T i s.t. t ≤ t′}

∗
⊕P (Ti) ΣTi ∪ { (t1 � ... � tn)(ap) | p = {t1, ..., tn} ∈ P}
∗
N (Ti) ΣTi ∪ { t1 � ... � tn

.

≤ ⊥ | {t1, ..., tn} ∈ N}
e1 ⊕P e2 Σe1 ∪ Σe2∪ { (t1 � ... � tn)(ap) | p = {t1, ..., tn} ∈ P}
e1 N e2 Σe1 ∪ Σe2∪ { t1 � ... � tn

.

≤ ⊥ | {t1, ..., tn} ∈ N}

Table 2. Using DL for representing the compound terminology of a CTCA
expression

Having defined Σe in this way, Table 3 sketches how we can check whether
a compound term s = {t1, ..., tn} belongs to the compound terminology Se of
an expression e by using Σe and the inference mechanisms of DL. In this table
we consider that s1 = {t ∈ s | F (t) ∈ F (e1)} and s2 = {t ∈ s | F (t) ∈ F (e2)},
where F (t) is the facet of term t, and F (e) are the facets appearing in e.

Notice the difference between the algorithm for the plus-products with that
of the minus-products: if the current operation is a plus-product then validity
checking reduces to query answering, while if the current operation is a minus-
product then validity checking reduces to satisfiability checking. It follows that if
we would like to use a DL-based system for checking the validity of a compound
term then we should design a metasystem (on top of DL inference engine) that
parses the expression e and recursively calls the inference mechanisms of DL (i.e.
query answering and concept satisfiability) as described in Table 3. We omit the
proof that this metasystem would function correctly, because the recursive calls
of Table 3 are based exactly on the algorithm IsV alid(e, s) as it has been given
in [13].

Alternatively, if we want to use the classical reasoning services of DL, then
we cannot create the Σe by the method described in Table 2. Instead, we have
to either:
10 It is important that the expression e be well-formed. Otherwise, the TBOX may be

inconsistent.

74 Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos

CTCA approach A DL-based approach

IsV alid(Ti, s)=TRUE { a | ΣTi |= ds(a)} �= ∅
IsV alid(

∗
⊕P (Ti), s)=TRUE { a | Σ ∗⊕P (Ti)

|= ds(a)} �= ∅

IsV alid(
∗
N (Ti), s)=TRUE Σ ∗�N (Ti)

�|= ds ≡ ⊥
IsV alid(e1 ⊕P e2, s)=TRUE ({ a | Σe1⊕P e2 |= ds(a)} �= ∅) ∨

IsV alid(e1, s) ∨
IsV alid(e2, s)

IsV alid(e1 N e2, s)=TRUE (Σe1�N e2 �|= ds ≡ ⊥) ∧
IsV alid(e1, s1) ∧
IsV alid(e2, s2),
where
s1 = {t ∈ s | F (t) ∈ F (e1)} and
s2 = {t ∈ s | F (t) ∈ F (e2)}

Table 3. Using DL for checking the validity of a compound term

(a) convert all minus-products to plus-products (and then translate the resulting
plus-products to DL), or
(b) convert all plus-products to minus-products (and then translate the resulting
minus-products to DL).

We can convert a minus-product operation e1 �N e2 to a plus-product oper-
ation (and vice-versa) as follows:

e1 �N e2 = e1 ⊕P e2 where P = GSe1 ,Se2
−Nr(N)

e1 ⊕P e2 = e1 �N e2 where N = GSe1 ,Se2
−Br(P)

So according to approach (a), we translate each plus-product operation as
described in Table 2, and each minus-product operation e1 �N e2 as:

Σe1 ∪Σe2 ∪ { ds(as) | s ∈ GSe1 ,Se2
−Nr(N)}

It is evident that if we derive Σe in this way, it holds:

s ∈ Se iff { a | Σe |= ds(a)} �= ∅

Now according to approach (b) we translate each minus-product operation
as described in Table 2, and each plus-product operation e1 ⊕P e2 as follows:

Σe1 ∪Σe2 ∪ { ds � ⊥ | s ∈ GSe1 ,Se2
−Br(P)}

It is again evident that if we derive Σe in this way, it holds:

s ∈ Se iff Σe �|= ds ≡ ⊥

However note, that in both (a) and (b) approaches, the conversion of plus-
products to minus-products (or the reverse) requires computing GSe1 ,Se2

which

Compound Term Composition Algebra: The Semantics 75

in turn requires computing Se1 and Se2 . This might turn out computationally
heavy. Recall that the reason that CTCA supports both positive and negative
statements (i.e. plus-products and minus-products) is to allow the designer to
select at each step the most economical operation i.e. the one that requires
providing the less number of parameters. Under this assumption, it follows that
the above conversion is expected to result in an expression with much more
parameters, i.e. to a much bigger in size DL theory.

From the above discussion it is evident that we cannot represent CTCA
expressions in DL in a straightforward manner (due to the closed-world assump-
tions inherent to the operations of CTCA). In addition, in the DL framework
there is no clear method for deciding whether an expression is well-formed.

5 Conclusion

In this paper, we defined the semantics of the Compound Term Composition
Algebra (CTCA). Specifically, we justified the definition of the algebraic oper-
ations, based on the model-theoretic definition of the valid and invalid genuine
compound terms. Having defined the valid (resp. invalid) genuine compound
terms of a positive (resp. negative) operation, the invalid (resp. valid) genuine
compound terms are computed based on a closed-world assumption. The valid
compound terms according to an expression e is the union of the valid genuine
compound terms of all operations of e.

Additionally, we defined the models of an algebraic expression. Intuitively,
a model of an algebraic expression, is an interpretation which is non-empty
for each valid compound term, and empty for each invalid compound term.
We proved that every well-formed algebraic expression is satisfiable. Moreover,
we proved that well-formed algebraic expressions are monotonic, which ensures
that results of subexpressions are not invalidated by larger expressions. We also
showed that we cannot directly represent the compound taxonomies defined by
CTCA directly in Description Logics, and a metasystem was designed on top of
Description Logics to implement the algebra.

CTCA can be used in any application that indexes objects using a faceted
taxonomy. For example, it can be used for designing compound taxonomies for
products, for fields of knowledge (e.g. indexing the books of a library), etc.

As we can infer the valid compound terms of a faceted taxonomy, we are
able to generate a single hierarchical navigation tree on the fly, having only
valid compound terms as nodes. The algorithm for deriving navigation trees on
the fly is given in [13]. Such a navigational tree can be used for object indexing,
preventing indexing errors, as well as for object retrieval, guiding the user to
only meaningful selections.

Moreover, CTCA can be used for providing compact representations. This is
because, there is no need to store the complete set of valid compound terms of
a faceted taxonomy. Only the faceted taxonomy and the expression have to be
stored. A novel application of CTCA for compressing Symbolic Data Tables is
described in [15]. For more about Symbolic Data Analysis, see [3, 4].

76 Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos

The algebra can also be used for query answering optimization. For example,
consider Figure 1, and assume that the user wants to retrieve all hotels located
in Greece and offer winter sports. As {Islands, WinterSports} is an invalid
compound term, the system (optimizing execution) does not have to look for
hotels located in islands at all.

Another application of the algebra is consistency control. In certain applica-
tions, objects may be indexed to non-meaningful compound terms (due to lack
of information or other factors). In such case, the algebra can help to point-out
the incorrectly indexed objects. Genomic experiments belong to this category,
as several aspects of the genomic domain are still unknown, and experimental
methods may be inaccurate or based on erroneous assumptions. The Gene On-
tology (GO)11 is a faceted taxonomy with 3 facets, namely Molecular Function,
Biological Process, and Cellular Component. Genes may be indexed to one or
more terms of each facet. The annotation guide of GO indicates that indexing
of genes to contradictory compound terms is allowed, as long as indexing of
a gene by a term is associated with the type of evidence and a cited source.
Specifying the valid compound terms of GO using the algebra, genes indexed by
an invalid compound term, can be immediately designated by an inconsistency
flag. Certainly, knowing the genes indexed by an invalid compound term is of
interest to biologists who need to perform more elaborate experiments to correct
inconsistencies.

The algebra can also be used for configuration management. Consider a
product whose configuration is determined by a number of parameters, each
associated with a finite number of values. However, some configurations may be
unsupported, unviable, or unsafe. For this purpose, the product designer can
employ an expression which specifies all valid configurations, thus ensuring that
the user selects only among these.

As future work, we plan to study how updates on the faceted taxonomy, or
changes to the desired compound terminology should update the expression that
defines the compound terminology. This process can be automated. This is very
important in practice, as it adds flexibility to the design process: the designer
during the formulation of the expression e can update the faceted taxonomy,
without having to bother that e will become obsolete. Additionally, the designer
can add or delete compound terms from the desired compound terminology
without having to worry that e will no longer reflect his/her desire.

References

[1] “XFML: eXchangeable Faceted Metadata Language”. http://www.xfml.org.

[2] “XFML+CAMEL:Compound term composition Algebraically-Motivated Expres-
sion Language”. http://www.csi.forth.gr/markup/xfml+camel.

[3] H. H. Bock and E. Diday. Analysis of Symbolic Data. Springer-Verlag, 2000.
ISBN: 3-540-66619-2.

11 http://www.geneontology.org/

Compound Term Composition Algebra: The Semantics 77

[4] Edwin Diday. “An Introduction to Symbolic Data Analysis and the Sodas Soft-
ware”. Journal of Symbolic Data Analysis, 0(0), 2002. ISSN 1723-5081.

[5] F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. “Reasoning in Description
Logics”. In Gerhard Brewka, editor, Principles of Knowledge Representation,
chapter 1, pages 191–236. CSLI Publications, 1996.

[6] Elizabeth B. Duncan. “A Faceted Approach to Hypertext”. In Ray McAleese,
editor, HYPERTEXT: theory into practice, BSP, pages 157–163, 1989.

[7] P. H. Lindsay and D. A. Norman. Human Information Processing. Academic
press, New York, 1977.

[8] Amanda Maple. “Faceted Access: A Review of the Literature”, 1995.
http://theme.music.indiana.edu/tech s/mla/facacc.rev.

[9] Ruben Prieto-Diaz. “Classification of Reusable Modules”. In Software Reusability.
Volume I, chapter 4, pages 99–123. acm press, 1989.

[10] Ruben Prieto-Diaz. “Implementing Faceted Classification for Software Reuse”.
Communications of the ACM, 34(5):88–97, 1991.

[11] U. Priss and E. Jacob. “Utilizing Faceted Structures for Information Systems
Design”. In Proceedings of the ASIS Annual Conf. on Knowledge: Creation, Or-
ganization, and Use (ASIS’99), October 1999.

[12] S. R. Ranganathan. “The Colon Classification”. In Susan Artandi, editor, Vol IV
of the Rutgers Series on Systems for the Intellectual Organization of Information.
New Brunswick, NJ: Graduate School of Library Science, Rutgers University,
1965.

[13] Y. Tzitzikas, A. Analyti, N. Spyratos, and P. Constantopoulos. “An Algebraic
Approach for Specifying Compound Terms in Faceted Taxonomies”. In Informa-
tion Modelling and Knowledge Bases XV, 13th European-Japanese Conference on
Information Modelling and Knowledge Bases, EJC’03, pages 67–87. IOS Press,
2004.

[14] Y. Tzitzikas, R. Launonen, M. Hakkarainen, P. Kohonen, T. Leppanen, E. Sim-
panen, H. Tornroos, P. Uusitalo, and P. Vanska. “FASTAXON: A system for
FAST (and Faceted) TAXONomy design”. In Procs. of 23th Int. Conf. on Con-
ceptual Modeling, ER’2004, Shanghai, China, November 2004. (an on-line demo
is available at http://fastaxon.erve.vtt.fi/).

[15] Yannis Tzitzikas. “An Algebraic Method for Compressing Very Large Symbolic
Data Tables”. In Procs. of the Workshop on Symbolic and Spatial Data Analysis
of ECML/PKDD 2004, Pisa, Italy, September 2004.

[16] Yannis Tzitzikas and Anastasia Analyti. “Mining the Meaningful Compound
Terms from Materialized Faceted Taxonomies ”. In Procs. of the 3rd Intern. Con-
ference on Ontologies, Databases and Applications of Semantics, ODBASE’2004,
pages 873–890, Larnaca, Cyprus, October 2004.

[17] Yannis T. Tzitzikas. “Collaborative Ontology-based Information Indexing and Re-
trieval”. PhD thesis, Department of Computer Science - University of Crete,
September 2002.

[18] B. C. Vickery. “Knowledge Representation: A Brief Review”. Journal of Docu-
mentation, 42(3):145–159, 1986.

[19] W. A. Woods. “Understanding Subsumption and Taxonomy”. In Principles of
Semantic Networks, chapter 1. Morgan Kaufmann Publishers, 1991.

78 Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos

Appendix A: Proofs

In this Appendix, we give the proofs of the propositions appearing in the paper.

We first prove an auxiliary lemma.

Lemma 1 Let S be the compound terminology of an algebraic expression. It holds
Br(S) = S.

Proof:
We will prove Lemma 1, recursively. Obviously, it holds S ⊆ Br(S).

Let S = Ti then from the definition of a basic compound taxonomy, it follows Br(Ti) =
Ti.

Let S =
∗
⊕P Ti, then Br(S) = Br(Ti∪Br(P)) = Br(Ti)∪Br(Br(P)) = Ti∪Br(P) = S.

Let S =
∗
N Ti, then Br(S) = Br(

∗
⊕ Ti−Nr(N)). We will show Br(

∗
⊕ Ti−Nr(N)) ⊆

∗
⊕

Ti − Nr(N). Let s ∈ Br(
∗
⊕ Ti − Nr(N)). Then, there is s′ ∈

∗
⊕ Ti − Nr(N) such that

s′ � s. If s ∈ Nr(N) then s′ ∈ Nr(N), which is impossible. Thus, s ∈
∗
⊕ Ti − Nr(N).

Therefore, Br(S) = S.

Let S = ⊕P (S1, ..., Sn), such that Br(Si) = Si, for i = 1, ..., n. It holds Br(S) =
Br(S1) ∪ ... ∪ Br(Sn) ∪ Br(Br(P)) = S1 ∪ ... ∪ Sn ∪ Br(P) = S.

Let S = S1 ⊕ ... ⊕ Sn such that Br(Si) = Si, for i = 1, ..., n. We will show
Br(S) = S. Let s ∈ Br(S1 ⊕ ... ⊕ Sn). Then, ∃s′ ∈ S1 ⊕ ... ⊕ Sn such that s′ ≤ s.
Let s′ = s′1 ∪ ... ∪ s′n, where s′i ∈ Si, for i = 1, ..., n. Thus, s = s1 ∪ ... ∪ sn, where
si ∈ Si and s′i ≤ si, for i = 1, ..., n. Thus, si ∈ Br(Si), for i = 1, ..., n. Therefore,
s ∈ Br(S1) ⊕ ... ⊕ Br(Sn) = S1 ⊕ ... ⊕ Sn.

Let S = N(S1, ..., Sn) such that Br(Si) = Si, for i = 1, ..., n. It holds Br(S) =
Br(S1⊕...⊕Sn−Nr(N)). We will show Br(S1⊕...⊕Sn−Nr(N)) ⊆ S1⊕...⊕Sn−Nr(N).
Let s ∈ Br(S1 ⊕ ... ⊕ Sn − Nr(N)). Then, there is s′ ∈ S1 ⊕ ... ⊕ Sn − Nr(N) such
that s′ � s. If s ∈ Nr(N) then s′ ∈ Nr(N), which is impossible. Thus, s ∈ Br(S1 ⊕
... ⊕ Sn) − Nr(N) = S1 ⊕ ... ⊕ Sn − Nr(N). Therefore, Br(S) = S. �

Proposition 1 Let S be a compound taxonomy over a taxonomy T , and let s and s′

be two elements of S. It holds:

s � s′ iff I(s) ⊆ I(s′) in every model I of (T,≤)

Proof:

(⇒)

Let s = {a1, ..., am} and s′ = {b1, ..., bn}. If s � s′, then for each bi exists aj such
that aj ≤ bi. This means that in every model I of (T,≤), it holds I(aj) ⊆ I(bi). Now,
as I(s) = I(a1) ∩ ... ∩ I(ak) and I(s′) = I(b1) ∩ ... ∩ I(bm), it is evident that it holds
I(s) ⊆ I(s′) in every model I of (T,≤).

(⇐)

Let s = {a1, ..., am} and s′ = {b1, ..., bn}. As it has been shown in [17],
I(s) ⊆ I(s′) in every model of (T,≤) iff r(s ∪ s′) = r(s), where r({t1, ..., tn}) =
minimal≤({c(t1), ..., c(tk)}) where c(t) denotes the equivalence class of a term t. How-

Compound Term Composition Algebra: The Semantics 79

ever, r(s∪ s′) = r(s) can hold only if for each t′ ∈ s′ exists t ∈ s such that t ≤ t′. Thus
it must hold s � s′. �

Proposition 2 V G(e ⊕P e′) = Br(P) ∩ GV C(e),V C(e′)
Proof:
First, we will show that V G(e ⊕P e′) ⊆ Br(P) ∩ GV C(e),V C(e′). Let s ∈ V G(e ⊕P e′).
It holds I(s) �= ∅, in every model I such that I(p) �= ∅, ∀p ∈ P . Therefore, it holds
that exists p ∈ P such that I(p) ⊆ I(s), for every model I . From Prop. 1, it follows
that p � s. Therefore, s ∈ Br(P). As V G(e ⊕P e′) ⊆ GV C(e),V C(e′), it follows that
s ∈ Br(P) ∩ GV C(e),V C(e′).

We will now show that Br(P) ∩ GV C(e),V C(e′) ⊆ V G(e ⊕P e′). Let s ∈ Br(P) ∩
GV C(e),V C(e′). Thus, there is p ∈ P such that p � s. From Prop. 1, it follows that
I(p) ⊆ I(s), for every model I . Thus, s ∈ V G(e ⊕P e′). �

Proposition 3 IG(e N e′) = Nr(N) ∩ GV C(e),V C(e′)
Proof:
First, we will show that IG(e N e′) ⊆ Nr(N) ∩ GV C(e),V C(e′). Let s ∈ IG(e N e′).
It holds I(s) = ∅, in every model I such that I(n) = ∅, ∀n ∈ N . Therefore, it holds
that exists n ∈ N such that I(s) ⊆ I(n), for every model I . From Prop. 1, it follows
that s � n. Therefore, s ∈ Nr(N). As IG(e N e′) ⊆ GV C(e),V C(e′), it follows that
s ∈ Nr(N) ∩ GV C(e),V C(e′).

We will now show that Nr(N) ∩ GV C(e),V C(e′) ⊆ IG(e N e′). Let s ∈ Nr(N) ∩
GV C(e),V C(e′). Thus, there is n ∈ N such that s � n. From Prop. 1, it follows that
I(s) ⊆ I(n), for every model I of (T ,≤). Thus, s ∈ IG(e N e′). �

Proposition 4 Let e be a well-formed expression. There always exists a model I of
(T ,≤) that satisfies e.
Proof:
We create a model I of (T ,≤) as follows:
Initially, I(t) = ∅, for every t ∈ T . Let V C(e) = {s1, ..., sn}. For each si =
{ti,1, ..., ti,ni} ∈ V C(e), we insert an object oi to each I(ti,j), for i = 1, ...n and
j = 1, ..., ni.
For each t ≤ t′, we extend I(t′) such that I(t) ⊆ I(t′). For each t ∈ T , I(t) contains
nothing else.

From the construction, I is a model of (T ,≤). Additionally, ∀s ∈ V C(e), obviously,
it holds that I(s) �= ∅. We will show that ∀s ∈ IC(e), it holds that I(s) = ∅. Assume
that ∃s ∈ IC(e) such that I(s) �= ∅. Then, there should be an s′ ∈ V C(e) such
that s′ � s. From Prop. 5 and Lemma 1. it follows that Br(V C(e)) = V C(e). Thus,
s ∈ V C(e), which is impossible as V C(e) ∩ IC(e) = ∅. Therefore, ∀s ∈ IC(e), it holds
that I(s) = ∅. �

Proposition 5 Let e be a well-formed expression. It holds:

V C(e) = Se and IC(e) = P (T e) − Se

Proof:
We will prove the proposition recursively.
The proposition obviously holds for e = Ti.

80 Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos

Let e = e1 ⊕P e2, and assume that the proposition holds for e1 and e2.
Using Proposition 2 and assumption, we have: V C(e1⊕P e2) = V G(e1⊕P e2)∪V C(e1)∪
V C(e2) = (Br(P)∩GSe1 ,Se2

)∪Se1∪Se2 = (Br(P)∩(Se1⊕Se2))∪Se1∪Se2 . As e is well-
formed, it holds Br(P) ⊆ Se1⊕Se2 . Therefore, V C(e1⊕P e2) = Br(P)∪Se1∪Se2 = Se.

Now, let e = e1 N e2, and assume that the proposition holds for e1 and e2.
Using Proposition 3 and assumption, we have: V C(e1N e2) = V G(e1N e2)∪V C(e1)∪
V C(e2) = (GSe1 ,Se2

−Nr(N))∪Se1∪Se2 . As e is well-formed, it holds Nr(N)∩Se1 = ∅
and Nr(N) ∩ Se2 = ∅. Therefore, V C(e1 N e2) = Se1 ⊕ Se2 − Nr(N) = Se.

Therefore, for any expression e, V C(e) = Se. Now, it follows immediately that
IC(e) = P (T e) − Se. �

Proposition 6 Let e be a well-formed expression and e′ be a subexpression of e. Then,
it holds

V C(e′) ⊆ V C(e) and IC(e′) ⊆ IC(e)

Proof:
The fact that V C(e′) ⊆ V C(e) follows recursively from the definition of V C(e).
We will now show that IC(e′) ⊆ IC(e).

Let e = e1 op e2. Then, IC(e) = P (T e) − V C(e) = P (T e) − V C(e1 op e2) =
P (T e)−V G(e1 op e2)−V C(e1)−V C(e2) ⊇ P (T e1)−V G(e1 op e2)−V C(e1)−V C(e2).
As V G(e1 op e2) ∩ P (T e1) = ∅, and V C(e2) ∩ P (T e1) = ∅, it holds that IC(e) ⊇
P (T e1) − V C(e1) = IC(e1). Similarly, IC(e2) ⊆ IC(e).

Recursively, it holds that for any subexpression e′ of e, it holds that IC(e′) ⊆ IC(e).
�

Proposition 7 Let e be a well-formed expression and e1 op e2 be a subexpression of
e. Then, it holds

V G(e1 op e2) ⊆ V C(e) and IG(e1 op e2) ⊆ IC(e)

Proof:
The fact that V G(e1 op e2) ⊆ V C(e) follows recursively from the definition of V C(e).
We will now show that IG(e1 op e2) ⊆ IC(e).

From Prop. 6, it holds that IC(e1 op e2) ⊆ IC(e). Now, IC(e1 op e2) =
P (T e1 op e2) − V G(e1 op e2) − V C(e1) − V C(e2) ⊇ IG(e1 op e2). Therefore,
IG(e1 op e2) ⊆ IC(e). �

Proposition 8 Let e be a well-formed expression. It holds:

Br(V C(e)) = V C(e) and Nr(IC(e)) = IC(e)

Proof:
For Lemma 1 and Proposition 5, it follows immediately that Br(V C(e)) = V C(e).

Obviously, IC(e) ⊆ Nr(IC(e)). We will prove that Nr(IC(e)) ⊆ IC(e). Let s ∈
Nr(IC(e)). Then, there is s′ ∈ IC(e) such that s � s′. For the definition of IC(e), it
follows that s′ ∈ P (T e) − V C(e). Assume that s �∈ IC(e). Then, s ∈ V C(e), which
implies that s′ ∈ V C(e). However, this is impossible. Thus, s ∈ IC(e). �

Compound Term Composition Algebra: The Semantics 81

Appendix B: Example

Suppose that the domain of interest is a set of hotel Web pages and that we want
to index these pages using a faceted taxonomy. First, we must define the taxonomy.
Suppose it is decided to do the indexing according to three facets, namely the location of
the hotels, the kind of accommodation, and the facilities they offer. Specifically, assume
that the designer employs (or designs from scratch) the facets shown in Figure 4.

Location

Ammoudara Hersonissos Furn.
Appartments

Rooms Bungalows

Indoor

Jacuzzi SwimmingPool

Outdoor

Accommodation Facilities

Heraklion

Fig. 4. Three-facets

The faceted taxonomy has 13 terms (|T |=13) and P (T) has 890 compound terms12.
However, available domain knowledge suggests that only 96 compound terms are valid.
Omitting the compound terms which are singletons or contain top terms of the facets,
the following 23 valid compound terms remain:

{Heraklion, Furn.Appartments,}, {Heraklion, Rooms},
{Ammoudara,Furn.Appartments},{Ammoudara,Rooms},
{Ammoudara,Bungalows}, {Hersonissos, Furn.Appartments},
{Hersonissos, Rooms}, {Hersonissos,Bungalows},
{Hersonissos, SwimmingPool}, {Hersonissos, Indoor},
{Hersonissos, Outdoor}, {Ammoudara, Jacuzzi},
{Rooms, SwimmingPool}, {Rooms, Indoor},
{Bungalows, SwimmingPool}, {Bungalows, Outdoor},
{Bungalows, Jacuzzi}, {Hersonissos,Rooms, SwimmingPool},
{Hersonissos, Rooms, Indoor}, {Hersonissos,Bungalows, SwimmingPool},
{Hersonissos, Bungalows,Outdoor}, {Ammoudara,Bungalows, Jacuzzi}.

Rather than being explicitly enumerated, the 96 valid compound terms can be alge-
braically specified. In this way, the specification of the desired compound terms can
be done in a systematic, gradual, and easy manner. For example, the following plus-
product operation can be used:

⊕P (Location, Accommodation, Facilities), where

12 Equivalent compound terms are considered the same. Thus, |P (T)| is not 213

but 890. This is computed as follows: It holds that |
∗
⊕ (Location) |=8, |

∗
⊕

(Accomodation) | = 8, and |
∗
⊕ (Facilities) | = 10. Thus, |P (T)| = |(

∗
⊕ (Location))

⊕ (
∗
⊕ (Accomodation)) ⊕ (

∗
⊕ (Facilities)| | = (8 + 8 ∗ 8 + 8 ∗ 10 + 8 ∗ 8 ∗ 10) + (8 +

8 ∗ 10) + 10 = 890.

82 Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos

P = {{Heraklion, Furn.Appartments},
{Heraklion, Rooms},
{Ammoudara,Furn.Appartments},
{Ammoudara,Rooms},
{Hersonissos,Furn.Appartments},
{Ammoudara,Bungalows, Jacuzzi},
{Hersonissos,Rooms, Indoor},
{Hersonissos,Bungalows, Outdoor}}

Note that the compound terms in P are only 8. Alternatively, the same result can be
obtained more efficiently through the expression:

(Location N Accommodation) ⊕P Facilities,

where

N = {{Heraklion, Bungalows}}, and

P = {{Hersonissos, Rooms, Indoor},
{Hersonissos,Bungalows, Outdoor},
{Ammoudara,Bungalows, Jacuzzi}}

Note that now the total number of compound terms in P and N is just 4. In summary,
the faceted taxonomy of our example, includes 13 terms, 890 compound terms, and 96
valid compound terms which can be specified by providing only 4 (carefully selected)
compound terms and an appropriate algebraic expression.

Consider now the additional facet Season shown in Figure 5, and suppose that
{Bungalows, Winter} is an invalid combination of compound terms between the pre-
vious compound taxonomy (LocationN Accommodation)⊕P Facilities and the basic
compound taxonomy Season.

Season

Summer Winter

Allyear

Fig. 5. The facet Season

Then, the designer can declare the expression

((Location N Accommodation) ⊕P Facilities) N′ Season

where N ′ = {{Bungalows, Winter}}

Compound Term Composition Algebra: The Semantics 83

Note that the total number of compound terms in N , P , and N ′ is 5. The number
of valid compound terms is 530. Note that the new expression is well-formed. Thus,
previous results are not invalidated.

The same result could be obtained through the less efficient operation

⊕P ′(Location, Accommodation, Facilities, Season), where

P ′ = {{Heraklion, Furn.Appartments, Allyear}, {Heraklion, Rooms, Allyear},
{Ammoudara, Furn.Appartments, Allyear}, {Ammoudara, Rooms, Allyear},
{Hersonissos, Furn.Appartments, Allyear}, {Ammoudara, Bungalows, Jacuzzi, Summer},
{Hersonissos, Rooms, Indoor, Allyear}, {Hersonissos, Bungalows, Outdoor, Summer}}

In this case the number of compound terms in P ′ is 8.

We will now give an example of an expression which includes a minus-self-product
operation. Consider the faceted taxonomy of Figure 6.

Sports

SnowBoardSeaSki SnowSki

SeaSports WinterSports

Windsurfing

Location

OlymbusHeraklion

Fig. 6. Another faceted taxonomy

The user can declare the expression:

Location ⊕P (
∗
N (Sports)), where

N = {{SeaSports,W interSports}}, and

P = {{Heraklion, SeaSki, W indsurfing}, {Olymbus, SnowSki}}

84 Yannis Tzitzikas, Anastasia Analyti, and Nicolas Spyratos

Appendix C: Table of Symbols

Symbol Definition

P (.) Powerset

s � s′ ∀t′ ∈ s′ ∃t ∈ s such that t ≤ t′

Ti ∪{ Br({t}) | t ∈ T i}
S1 ⊕ ... ⊕ Sn { s1 ∪ ... ∪ sn | si ∈ Si}
⊕P (S1, ...Sn) S1 ∪ ... ∪ Sn ∪ Br(P)

N(S1, ...Sn) S1 ⊕ ... ⊕ Sn − Nr(N)
∗
⊕ (Ti) P (T i)
∗
⊕P (Ti) Ti ∪ Br(P)
∗
N (Ti)

∗
⊕ (Ti) − Nr(N)

GS1,...,Sn S1 ⊕ ... ⊕ Sn − ∪n
i=1Si

GTi

∗
⊕ (Ti) − Ti

Se the evaluation of an expression e

Î({t1, ..., tn}) I(t1) ∩ ... ∩ I(tn)

d{t1,...,tn} t1 � ... � tn

F (t) the facet of term t

F (e) the facets that appear in expression e

Table 4. Table of Symbols

Dynamic Pattern Mining:

An Incremental Data Clustering Approach

Seokkyung Chung and Dennis McLeod

Department of Computer Science
and Integrated Media System Center

University of Southern California
Los Angeles, California 90089–0781, USA

[seokkyuc, mcleod]@usc.edu

Abstract. We propose a mining framework that supports the identifi-
cation of useful patterns based on incremental data clustering. Given the
popularity of Web news services, we focus our attention on news streams
mining. News articles are retrieved from Web news services, and pro-
cessed by data mining tools to produce useful higher-level knowledge,
which is stored in a content description database. Instead of interact-
ing with a Web news service directly, by exploiting the knowledge in
the database, an information delivery agent can present an answer in
response to a user request. A key challenging issue within news reposi-
tory management is the high rate of document insertion. To address this
problem, we present a sophisticated incremental hierarchical document
clustering algorithm using a neighborhood search. The novelty of the pro-
posed algorithm is the ability to identify meaningful patterns (e.g., news
events, and news topics) while reducing the amount of computations
by maintaining cluster structure incrementally. In addition, to overcome
the lack of topical relations in conceptual ontologies, we propose a topic
ontology learning framework that utilizes the obtained document hier-
archy. Experimental results demonstrate that the proposed clustering
algorithm produces high-quality clusters, and a topic ontology provides
interpretations of news topics at different levels of abstraction.

1 Introduction

With the rapid growth of the World Wide Web, Internet users are now experienc-
ing overwhelming quantities of online information. Since manually analyzing the
data becomes nearly impossible, the analysis would be performed by automatic
data mining techniques to fulfill users’ information needs quickly.

On most Web pages, vast amounts of useful knowledge are embedded into
text. Given such large sizes of text datasets, mining tools, which organize the text
datasets into structured knowledge, would enhance efficient document access.
This facilitates information search and at the same time, provides an efficient
framework for document repository management as the number of documents
becomes extremely huge.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics II, LNCS 3360, pp. 85–112, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

86 Seokkyung Chung and Dennis McLeod

Given that the Web has become a vehicle for the distribution of information,
many news organizations are providing newswire services through the Internet.
Given this popularity of the Web news services, we have focused our attention
on mining patterns from news streams.1

The simplest document access method within Web news services is keyword-
based retrieval. Although this method seems effective, there exist at least three
drawbacks. First, if a user chooses irrelevant keywords (due to broad and vague
information needs or unfamiliarity with the domain of interest), retrieval ac-
curacy will be degraded. Second, since keyword-based retrieval relies on the
syntactic properties of information (e.g., keyword counting),2 semantic gap can-
not be overcome. Third, only expected information can be retrieved since the
specified keywords are generated from users’ knowledge space. Thus, if users are
unaware of the airplane crash that occurred yesterday, then they cannot issue a
query about that accident even though they might be interested.

The first two drawbacks stated above have been addressed by query expan-
sion based on domain-independent ontologies [47]. However, it is well known
that this approach leads to a degradation of precision. That is, given that the
terms introduced by term expansion may have more than one meaning, us-
ing additional terms can improve recall, but decrease precision. Exploiting a
manually developed ontology with a controlled vocabulary is helpful in this sit-
uation [27, 28, 29]. However, although ontology-authoring tools have been de-
veloped in the past decades, manually constructing ontologies whenever new
domains are encountered is an error-prone and time-consuming process. There-
fore, integration of knowledge acquisition with data mining, which is referred to
as ontology learning, becomes a must [32].

In this paper, we propose a mining framework that supports the identifi-
cation of meaningful patterns (e.g., topical relations, topics, and events that
are instances of topics) from news stream data. To build a novel framework
for an intelligent news database management and navigation scheme, we utilize
techniques in information retrieval, data mining, machine learning, and natural
language processing.

To facilitate information navigation and search on a news database, we first
identify three key problems.

1. Vague information needs. Sometimes, defining keywords for a search is not
an easy task, especially when a user has vague information needs. Thus, a
reasonable starting point would be provided to assist the user.

2. Lack of topical relations in concept-based ontologies. In order to achieve rich
semantic information retrieval, an ontology-based approach would be pro-
vided. However, as discussed in Agirre et al. [2], one of the main prob-

1 In this paper, we are concerned with (news) articles, which are also referred to as
documents.

2 Like Latent Semantic Indexing (LSI) [8], the vector space model based on keyword
counting can be augmented with semantics by combining other methods (e.g., Singu-
lar Value Decomposition). However, keyword-based retrieval in this paper is referred
to as the method relying on only simple keyword counting.

Dynamic Pattern Mining: An Incremental Data Clustering Approach 87

lems with concept-based ontologies is that topically related concepts and
terms are not explicitly linked.3 That is, there is no relation between court-
attorney, kidnap-police, etc. Thus, concept-based ontologies have a limitation
in supporting a topical search. For example, consider the Sports domain on-
tology that we have developed in our previous work [27, 28, 29]. In this
ontology, “Kobe Bryant”, who is an NBA basketball player, is related with
terms/concepts in Sports domain. However, for the purpose of query expan-
sion, “Kobe Bryant” needs to be connected with a “court trial” concept if
a user keeps “Kobe Bryant court trial” in mind. Therefore, it is essential to
provide explicit links between topically related concepts/terms.

3. High rate of document insertion. As several hundred news articles are pub-
lished everyday at a single Web news site, triggering the whole mining process
whenever a document is inserted to the database is computationally imprac-
tical. To cope with such a dynamic environment, efficient incremental data
mining tools need to be developed.

The first of the three problems can be approached using clustering. A collec-
tion of documents is easy to skim if similar articles are grouped together. If the
news articles are hierarchically classified according to their topics, then a query
can be formulated while a user navigates a cluster hierarchy. Moreover, cluster-
ing can be used to identify and deal with near-duplicate articles. That is, when
news feeds repeat stories with minor changes from hour to hour, presenting only
the most recent articles is probably sufficient.

To remedy the second problem, we present a topic ontology, which is defined
as a collection of concepts and relations. In a topic ontology, concept is defined as
a set of terms that characterize a topic. We define two generic kinds of relations,
generalization and specialization. The former can be used when a query is gen-
eralized to increase recall or broaden the search. On the other hand, the latter is
useful when refining the query. For example, when a user is interested in some-
one’s court trial but cannot remember the name of a person, then specialization
can be used to narrow down the search.

To address the third problem, we propose a sophisticated incremental hierar-
chical document clustering algorithm using a neighborhood search. The novelty
of the proposed algorithm is the ability to identify news event clusters as well
as news topic clusters while reduce the amount of computation by maintaining
cluster structure incrementally. Learning topic ontologies can be performed on
the obtained document hierarchy.

Figure 1 illustrates the main parts of the proposed framework. In the infor-
mation gathering stage, a Web crawler retrieves a set of news documents from
a news Web site (e.g., CNN). Developing an intelligent Web crawler is another
research area, and it is not our main focus. Hence, we implement a simple Web
spider, which downloads news articles from a news Web site on a daily basis.
3 Although there exist different types of term association relationships in WordNet [36]

such as “Bush versus President of US” as synonym, or “G.W. Bush versus R. Rea-
gan” as coordinate terms, these types of relationships are limited to addressing
topical relationships.

88 Seokkyung Chung and Dennis McLeod

Fig. 1. Overview of a proposed framework

The retrieved documents are processed by data mining tools to produce useful
higher-level knowledge (e.g., a document hierarchy, a topic ontology, etc), which
is stored in a content description database. Instead of interacting with a Web
news service directly, by exploiting knowledge in the database, an information
delivery agent can present an answer in response to a user request.

Main contributions of our work are twofold. First, despite the huge body of
research efforts on document clustering [33, 30, 22, 31, 52], little work has been
conducted in the context of incremental hierarchical news document clustering.
To address the problem of frequent document insertions into a database, we
have developed an incremental hierarchical clustering algorithm using a neigh-
borhood search. Since the algorithm produces a document cluster hierarchy, it
can identify event level clusters as well as topic level clusters. Second, to address
the lack of topical relations in concept-based ontologies, we propose a topic on-
tology learning framework, which can interpret news topics at multiple levels of
abstraction.

The remainder of this paper is organized as follows. Section 2 presents re-
lated work. Section 3 discusses the information preprocessing step. In Section 4,
we explain the information analysis component, which is a key focus of this pa-
per. Section 5 presents experimental results. Finally, we conclude the paper and
provide our future plans in Section 6.

2 Related Work

The most relevant research areas to our work are Topic Detection and Tracking
(TDT) and document clustering. Section 2.1 presents a brief overview on TDT

Dynamic Pattern Mining: An Incremental Data Clustering Approach 89

work. In Section 2.2, a survey on previous document clustering work is provided.
Finally, Section 2.3 introduces previous work on intelligent news services, which
utilize document clustering and TDT.

2.1 Topic Detection and Tracking

Over the past six years, the information retrieval community has developed a
new research area, called Topic Detection and Tracking (TDT) [4, 5, 10, 48, 49].
The main goal of TDT is to detect the occurrence of a novel event in a stream of
news stories, and to track the known event. In particular, there are three major
components in TDT.

1. Story segmentation. It segments a news stream (e.g., including transcribed
speech) into topically cohesive stories. Since online Web news (in HTML
format) is supplied in segmented form, this task only applies to audio or TV
news.

2. First Story Detection (FSD). It identifies whether a new document belongs
to an existing topic or a new topic.

3. Topic tracking. It tracks events of interest based on sample news stories. It
associates incoming news stories with the related stories, which were already
discussed before. It can be also asked to monitor the news stream for further
stories on the same topic.

In Allan et al. [4], the notion of event is first defined. Event is defined as “some
unique thing that happens at some point in time”. Hence, an event is different
from a topic. For example, “airplane crash” is a topic while “Chinese airplane
crash in Korea in April 2002” is an event. Thus, there exists M-1 mapping
between event and topic (i.e., multiple events can be on a same topic). Note
that it is important to identify events as well as topics. Although the user may
not be interested in a flood topic, in general, she may be interested in documents
about a flood event in her home town. Thus, a news recommendation system
must be able to distinguish different events within a same topic.

Yang et al. introduced an important property of news events, referred to as
temporal locality [48]. That is, news articles discussing the same event tend to be
temporally proximate. In addition, most of the events (e.g., flood, earthquake,
wildfire, kidnapping) have short duration (e.g., 1 week - 1 month). They exploited
these heuristics when computing similarity between two news articles.

The most popular method in TDT is to use a simple incremental cluster-
ing algorithm, which is shown in Figure 2. Our work starts by addressing the
limitations of this algorithm.

2.2 Document Clustering

In this section, we classify the widely used document clustering algorithms into
two categories (partition-based clustering and hierarchical clustering), and pro-
vide a concise overview for each of them.

90 Seokkyung Chung and Dennis McLeod

1. Initially, only one news article is available, and it forms a singleton
cluster.

2. For an incoming document (d∗), we compute the similarity between d∗
and pre-generated clusters. The similarity is computed by the
distance between d∗ and the representative of the cluster.

3. Selects the cluster (Ci) that has the maximum proximity with d∗.

4. If the similarity between d∗ and Ci exceeds the pre-defined threshold,
then all documents in Ci are considered as related stories to d∗
(topic tracking), and d∗ is assigned to Ci.
Otherwise, d∗ is considered as a novel story (first story detection), and
a new cluster for d∗ is created.

5. Repeat 2-4 whenever a new document appears in a stream.

Fig. 2. The incremental document clustering algorithm in TDT

Partition-Based Clustering Partition-based clustering decomposes a collec-
tion of documents, which is optimal with respect to some pre-defined function.
Typical methods in this category include center-based clustering, Gaussian Mix-
ture Model, etc.

Center-based algorithms identify the clusters by partitioning the entire da-
taset into a pre-determined number of clusters (e.g., K-means clustering), or an
automatically derived number of clusters (e.g., X-means clustering) [9, 23, 13,
16, 30, 37, 39].

The most popular and the best understood clustering algorithm is K-means
clustering [13]. The K-means algorithm is a simple but powerful iterative clus-
tering method to partition a dataset into K disjoint clusters, where K must
be determined beforehand. The idea of the algorithm is to assign points to the
cluster such that the sum of the mean square distance of points to the center of
the assigned cluster is minimized.

While the K-means clustering approach works in a metric space, medoid-
based method works with a similarity space [23, 37]. It uses the medoids (repre-
sentative sample objects) instead of the means (e.g., the centers of clusters) such
that the sum of the distances of points to their closest medoid is minimized.

Although the center-based clustering algorithms have been widely used in
document clustering, there exist at least five serious drawbacks. First, in many
center-based clustering algorithms, the number of clusters (K) needs to be deter-
mined beforehand. Second, the algorithm is sensitive to an initial seed selection.
Depending on the initial points, it is susceptible to a local optimum. Third,
it can model only a spherical (K-means) or ellipsoidal (K-medoid) shape of

Dynamic Pattern Mining: An Incremental Data Clustering Approach 91

clusters. Thus, the non-convex shape of clusters cannot be modeled in center-
based clustering. Forth, it is sensitive to outliers since a small amount of outliers
can substantially influence the mean value. Finally, due to the nature of iter-
ative scheme in producing clustering results, it is not relevant for incremental
datasets.

Hierarchical Agglomerative Clustering Hierarchical (agglomerative) clus-
tering (HAC) finds the clusters by initially assigning each document to its own
cluster and then repeatedly merging pairs of clusters until a certain stopping
condition is met [13, 18, 26, 19, 52]. Consequently, its result is in the form of
a tree, which is referred to as a dendrogram. A dendrogram is represented as a
tree with numeric levels associated to its branches.

The main advantage of HAC lies in its ability to provide a view of data at
multiple levels of abstraction. However, since HAC builds a dendrogram, a user
must determine where to cut the dendrogram to produce actual clusters. This
step is usually done by human visual inspection, which is a time-consuming and
subjective process. Moreover, the computational complexity of HAC is more ex-
pensive than that of partition-based clustering. In partition-based clustering, the
computational complexity is O(nKI) where n is the number of documents, K is
the number of clusters, and I is the number of iterations, respectively. In contrast,
HAC takes O(n3) if pairwise similarities between clusters are changed when two
clusters are merged. However, the complexity can be reduced to O(n2logn) if we
utilize a priority queue [52].

2.3 Intelligent News Services Systems

The one of the most successful intelligent news services is NewsBlaster [34].
The basic idea of NewsBlaster is to group the articles on the same story using
clustering, and present one story using multi-document summarization. Thus,
the main goal of NewsBlaster is similar to ours in that both aim to propose
intelligent news analysis/delivery tools. However, the underlying methodology is
different. For example, with respect to clustering, NewsBlaster is based on the
clustering algorithm in Hatzivassiloglou et al. [22]. Main contributions of their
work is to augment document representation using linguistic features. However,
rather than developing their own clustering algorithm, they used conventional
HAC, which has the drawbacks as discussed in Section 2.2.

Recent attempts present other intelligent news services like NewsInEs-
sence [41, 42], or QCS (Query, Cluster, Summarize) [14]. Both services utilize a
similar approach to NewsBlaster in that they separate the retrieved documents
into topic clusters, and create a single summary for each topic cluster. However,
their main focus does not lie in developing a novel clustering algorithm. For ex-
ample, QCS utilizes generalized spherical K-means clustering whose limitations
have been addressed in Section 2.2.

Therefore, it is worthwhile to develop a sophisticated document clustering al-
gorithm that can overcome the drawbacks of previous document clustering work.

92 Seokkyung Chung and Dennis McLeod

In particular, the developed algorithm must address the special requirements in
news clustering such as high rate of document insertion, or ability to identify
event level clusters as well as topic level clusters.

3 Information Preprocessing

The information preprocessing step extracts meaningful information from un-
structured text data and transforms it into structured knowledge. As shown in
Figure 1, this step is composed of the following standard IR tools.

– HTML preprocessing. Since downloaded news articles are in HTML format,
we remove irrelevant HTML tags for each article and extract meaningful
information.

– Tokenization. Its main task is to identify the boundaries of the terms.
– Stemming. There can be different forms for the same terms (e.g., students

and student, go and went). These different forms of the same term need
to be converted to their roots. Toward this end, instead of solely relying on
Porter stemmer [40], in order to deal with irregular plural/tense, we combine
Porter stemmer with the lexical database [35].

– Stopwords removal. Stopwords are the terms that occur frequently in the
text but do not carry useful information. For example, have, did, and get
are not meaningful. Removing such stopwords provide us with a dimension-
ality reduction effect. We employ the stopword list that was used in Smart
project [44].

After preprocessing, a document is represented as a vector in an n-dimensional
vector space [44]. The simple way to do this is to employ the Bag-Of-Word
(BOW) approach. That is, all content-bearing terms in the document are kept
and any structure of text or the term sequence is ignored. Thus, each term is
treated as a feature and each document is represented as a vector of certain
weighted term frequencies in this feature space.

There are several ways to determine the weight of a term in a document.
However, most methods are based on the following two heuristics.

– Important terms occur more frequently within a document than unimportant
terms do.

– The more times a term occurs throughout all documents, the weaker its
discriminating power becomes.

The term frequency (TF) is based on the first heuristic. In addition, TF can
be normalized to reflect different document lengths. Let freqij be the number of
ti’s occurrence in a document j, and lj be the length of the document j. Then,
term frequency (tfij) of ti in the document j is defined as follows:

tfij =
freqij

lj
(1)

Dynamic Pattern Mining: An Incremental Data Clustering Approach 93

kidnap abduct child boy police search missing investigate suspect return home

d1 1 0 1 0 1 1 0 1 0 0 0
d2 1 1 1 1 1 0 1 1 1 0 0
d3 0 1 0 1 0 0 1 0 0 1 1

Table 1. A sample illustrative example for document×term matrix. For simplic-
ity, each document vector is represented as boolean values instead of TF-IDF
values

The document frequency (DF) of the term (the percentage of the documents
that contain this term) is based on the second heuristic. A combination of TF
and DF introduces TF-IDF ranking scheme, which is defined as follows:

wij = tfij × log
n

ni
(2)

where wij is the weight of ti in a document j, n is the total number of documents
in the collection, and ni is the number of documents where ti occurs at least
once.

The above ranking scheme is referred to as static TF-IDF since it is based
on static document collection. However, since documents are inserted incremen-
tally, IDF values are initialized using a sufficient amount of documents (i.e.,
the document frequency is generated from training corpus). After then, IDF is
incrementally updated as subsequent documents are processed. In particular, we
employ an incremental update of IDF value proposed by Yang et al. [48].

Finally, to measure closeness between two documents, we use the Cosine met-
ric, which measures the similarity of two vectors according to the angle between
them [44]. Thus, vectors pointing to similar directions are considered as repre-
senting similar concepts. The cosine of the angles between two m-dimensional
vectors (x and y) is defined by

Similarity(x, y) = Cosine(x, y) =
∑m

i=1 xi · yi

||x||2 · ||y||2
(3)

4 Information Analysis

This section presents the information analysis component of Figure 1. Section 4.1
illustrates a motivating example for the proposed incremental clustering algo-
rithm. In Section 4.2, a non-hierarchical incremental document clustering al-
gorithm using a neighborhood search is presented. Section 4.3 explains how to
extend the algorithm into a hierarchical version. Finally, Section 4.4 shows how
to build a topic ontology based on the obtained document hierarchy.

4.1 A Motivating Example

To illustrate a simple example, consider the following three documents (whose
document×term matrix is shown in Table 1).

94 Seokkyung Chung and Dennis McLeod

Notation Meaning

n The total number of documents in a database

d∗ A new document

di An i-th document

ε Threshold for determining the neighborhood

Nε(di) ε-neighborhood for di

Ddi The set of documents that contain any term of di

Cdi The set of clusters that contain any neighbor of di

|A| The size of a set A where A can be a neighborhood or cluster

dfij Document frequency of a term ti within a set Aj

wij TF-IDF value for a term ti for a document dj

Sj Signature vector for a set Aj

sj
i i−th component of Sj

Table 2. Notations for incremental non-hierarchical document clustering

1. d1: A child is kidnapped so police starts searching.
2. d2: Police found the suspect of child kidnapping.
3. d3: An abducted boy safely returned home.

In the above three documents, although d1 and d2 are similar, and d2 and d3 are
similar, d1 and d3 are completely dissimilar since they share no terms. Conse-
quently, transitivity relation does not hold. Why does this happen? We provide
explanations to this question in terms of three different perspectives.

1. Fuzzy similarity relation. As discussed in the fuzzy theory [50], the similarity
relation does not satisfy transitivity. To make it satisfy transitivity, a fuzzy
transitivity closure approach was introduced. However, this approach is not
scalable with the number of data points.

2. Inherent characteristic of news. As discussed in Allan et al. [4], event is
considered as an evolving object through some time interval (i.e., content
of news articles on the same story are changed throughout time). Hence,
although the documents belong to a same event, the terms the documents
use would be different if they discuss different aspects of the event.

3. Language semantics. The diverse term usage for a same meaning (e.g., kidnap
and abduct) needs to be considered. Using only a syntactic property (e.g.,
keyword counting) aggravates the problem.

The transitivity is related with document insertion order in incremental clus-
tering. Consider the TDT incremental clustering algorithm in Figure 2. If the
order of document insertion is “d1d2d3”, then one cluster ({{d1, d2, d3}}) is ob-
tained. However, if the order is “d1d3d2”, then two clusters ({{d1, d2}, {d3}})
are obtained. Although the order of document insertion is fixed (because the
document is inserted whenever it is published), it is undesirable if the clustering
result significantly depends on the insertion order. Regardless of the input order,
the successful algorithm should produce a single cluster, {{d1, d2, d3}}.

Dynamic Pattern Mining: An Incremental Data Clustering Approach 95

4.2 A Proposed Incremental Non-hierarchical Document Clustering
Algorithm Using a Neighborhood Search

Before we present detailed discussions on the proposed clustering algorithm,
definitions for basic terminology are provided first. In addition, Table 2 shows
the notations, which will be used throughout this paper.

Definition 1 (similar). If Similarity(di, dj) ≥ ε, then a document di is re-
ferred to as similar to a document dj.

Definition 2 (Nε(di)). ε-neighborhood for di is {x : Similarity(x, di) ≥ ε}.

That is, ε-neighborhood for a document di is defined as a set of documents,
which are similar to di. In this paper, ε-neighborhood and neighborhood are used
interchangeably.

Definition 3 (neighbor). A document dj is defined as a neighbor of di if and
only if dj ∈ Nε(di).

The proposed clustering algorithm is based on the observation that a property
of an object would be influenced by the attributes of its neighbors. Examples of
such attributes are the properties of the neighbors, or the percentage of neighbors
that fulfill a certain constraint. The above idea can be translated into clustering
perspective as follows: a cluster label of an object depends on the cluster labels
of its neighbors.

Recent data mining research has proposed density-based clustering such as
Shared Nearest Neighbors (SNN) clustering [15, 24]. In SNN, the similarity be-
tween two objects is defined as the number of k-nearest neighbors they share.
Thus, the basic motivation of SNN clustering is similar to ours, however, as we
will explain in Section 4.3, the detailed approach is completely different.

Figure 3 shows the proposed incremental clustering algorithm. Initially, we
assume that only one document is available. Thus, this document itself forms a
singleton cluster. Adding a new document to existing cluster structure proceeds
in three phases: neighborhood search, identification of an appropriate cluster for
a new document, and re-clustering based on local information. In what follows,
these three steps are explained in detail.

Neighborhood Search Achieving an efficient neighborhood search is impor-
tant in the proposed clustering algorithm. Since we deal with documents in this
research, we can rely on an inverted index for the purpose of the neighborhood
search.4 In an inverted index [44], the index associates a set of documents with

4 Note that the neighborhood search can be supported with Multi-Dimensional In-
dex (MDI) structure [6, 20, 7] coupling with dimensionality reduction (e.g., wavelet
transforms [11] or Fourier transforms [3]) if the proposed algorithm is extended into
other data types such as time-series.

96 Seokkyung Chung and Dennis McLeod

Step 1. Initialization:
Document d0 forms a singleton cluster C0.

Step 2. Neighborhood search:
Given a new incoming document d∗, obtain Nε(d∗) by performing
a neighborhood search.

Step 3. Identification of a cluster that can host a new document:
Compute the similarity between d∗ and a cluster Ci ∈ Cd∗ .

Based on the value obtained from above,
if there exists a cluster (Cj) that can host d∗, then

add d∗ to the cluster and update the DCFj .
Otherwise,

create a new cluster for d∗ and
create a corresponding DCF vector for this new cluster.

Step 4. Re-clustering:
Let Cj be the cluster that hosts d∗.
If Cj is not a singleton cluster, then trigger merge operation.

Step 5.
Repeat Step 2-4 whenever a new document appears in a stream.

Fig. 3. The incremental non-hierarchical document clustering algorithm

terms. That is, for each term ti, we build a document list that contains all doc-
uments containing ti. Given that a document di is composed of t1, ... ,tk, to
identify similar documents to di, instead of checking whole document dataset,
it is sufficient to examine the documents that contain any ti. Thus, given a
document di, identifying the neighborhood can be accomplished in O(|Ddi |).

Identification of an Appropriate Cluster To assign an incoming document
(d∗) to the existing cluster, the cluster, which can host d∗, needs to be identified
using the neighborhood of d∗. If there exists such a cluster, then d∗ is assigned
to the cluster. Otherwise, d∗ is identified as an outlier and forms a singleton
cluster.

Toward this end, the set of candidate clusters (Cd∗) is identified by selecting
the cluster that contains any document belonging to Nε(d∗). Subsequently, the
cluster, which can host a new document, is identified by using one of the following
three methods.

1. Considering the size of an overlapped region. Select the cluster that has the
largest number of its members in Nε(d∗). This approach only considers the

Dynamic Pattern Mining: An Incremental Data Clustering Approach 97

number of documents in the overlapped region, and ignores the proximity
between neighbors and d∗.

2. Exploiting weighted voting. The similarities between each neighbor of d∗ and
the candidate clusters are measured. Then, the similarity values are aggre-
gated using weighted voting. That is, the weight is determined by the simi-
larity between the proximity of a neighbor to the new document. Thus, each
neighbor can vote for its class with a weight proportional to its proximity to
the new document.
Let Wj be a weight for representing the proximity of nj to the new document
(e.g., Cosine similarity between nj and the new document). Then, the most
relevant cluster (C∗) is selected based on the following formula:

C∗ = argmaxCk∈Cd∗

∑
nj∈Nε(d∗)

Wj · Similarity(nj, Sk) (4)

Equation (4) mitigates the problem of the previous method by consider-
ing the weight Wj . Moreover, it still favors the cluster with a large size of
overlapped region to Nε(d∗) by summing up the weighted similarity.

3. Exploiting a signature vector. While the weighted voting approach is effec-
tive, it is computationally inefficient since the similarities between all neigh-
bors and all candidate clusters need to be computed. Instead, we employ
a simple but effective approach, which measures the similarity between the
signature vector of the neighborhood and that of the candidate clusters.

The signature vector should be composed of terms that reflect the main
characteristics of the documents within a set. For example, the center of a cluster
would be a signature vector for the cluster. For each term ti in the set Aj (e.g.,
cluster/neighborhood), we compute the weight for the signature vector using the
following formula:

sj
i =

dfij

|Aj |
·

∑
dk∈Aj

wik

|Aj |
(5)

In Equation (5), the first factor measures the normalized document frequency
within a set, and the second factor measures the sum of the weight for the term
over the whole documents within a set.

Next, the notion of Document Cluster Feature (DCF) vector5 is presented as
follows:

Definition 4 (DCF). Document Cluster Feature (DCF) vector for a cluster
Ci is defined as a triple DCFi = (Ni, DFi, Wi) where Ni is the number of
documents in Ci, DFi is a document frequency vector for Ci, and Wi is a weight
sum vector for Ci, respectively.
5 The basic notion of DCF is motivated by Cluster Feature (CF) in BIRCH cluster-

ing [51].

98 Seokkyung Chung and Dennis McLeod

Step 1: Check whether d1 can be added to cluster 1

Step 2: Add d1 to cluster 1

Step 3: Merge cluster 1 and cluster 2 if they satisfy the merge constraint

Cluster 1

Cluster 2

d1

Neighborhood for d1

Cluster 1

Cluster 2

d1

Cluster 1

Fig. 4. Illustration of a re-clustering phase

Theorem 1 (Additivity of DCF). Let DCFi = (Ni, DFi, Wi) and DCFj

= (Nj, DFj, Wj) be the document cluster feature vectors for Ci and Cj, re-
spectively. Then, DCF for a new cluster (by merging Ci and Cj) is defined by
(Ni + Nj, DFi + DFj , Wi + Wj).

Proof. It is straightforward by simple linear algebra.

To compute the similarity between a document and a cluster, we only need
signature vectors of the cluster and the document. However, the signature vector
does not need to be recomputed as a new document is inserted to the cluster. This
property is based on the additivity of DCF. Since Si (a signature vector for Ci)
can be directly reconstructed from DCFi, instead of recomputing Si whenever
a new document is inserted into Ci, the DCFi only needs to be updated using
the additivity of DCF.

In sum, if there exists a cluster (Ci) that can host a new document, then the
new document is assigned to Ci and the DCFi is updated. Otherwise, a new
cluster for d∗ and a DCF vector for this cluster are created.

Re-clustering If d∗ is assigned to Ci, then a merge operation needs to be
triggered. This is based on a locality assumption [43]. Instead of re-clustering
the whole dataset, we only need to focus on the clusters that are affected by the
new document. That is, a new document is placed in the cluster, and a sequence
of cluster re-structuring processes is performed only in regions that have been
affected by the new document. Figure 4 illustrates this idea. As shown, clusters
that contain any document belonging to the neighborhood of a new document
need to be considered.

Dynamic Pattern Mining: An Incremental Data Clustering Approach 99

Notation Meaning

STCi A collection of specific terms for Ci

T Virtual time

df i(T) Document frequency of a term ti in whole documents at time T

df ij
IN (T) Document frequency of a term ti within Cj at time T

K Number of clusters at level 1 at time T

df ij
OUT (T) A quantitative value representing how much ti occurs outside

the cluster Cj at time T

Selij(T) Selectivity of a term ti for the cluster Cj at time T

Cj
i A i-th cluster at level j

Table 3. Notations for incremental hierarchical document clustering

4.3 How to Extend the Non-hierarchical Clustering Algorithm into
a Hierarchical Version?

When the algorithm in Figure 3 is applied to a news article dataset, different
event clusters6 can be obtained. Since our goal is to generate a cluster hierarchy,
all event clusters on the same topic need to be combined together. For example,
to reflect a court trial topic, all court trial event clusters at level 1 should be
merged in a single cluster at level 2. However, in many cases, this becomes a
difficult task due to the extremely high term-frequency of named entities within
a document. Named entities are people/organization, time/date and location,
which play a key role in defining “who”, “when”, and “where” of a news event.
Thus, although two different event clusters belong to the same topic, similarity
between the clusters becomes extremely low, consequently, the task of merging
different event clusters (on a same topic) is not simple.

To address the above problem, we illustrate how to extend the algorithm
(in Figure 3) into a hierarchical version. Table 3 summarizes the notations that
will be used in this section. Before presenting a detailed discussion, necessary
terminology is first defined.

Definition 5. Specific term (ST). A specific term for a cluster Ci is a term,
which frequently occurs within a cluster Ci, but rarely occurs outside of Ci. The
collection of specific terms for Ci is denoted by STCi .

Definition 6. Virtual time (T). Virtual time T is initialized by 0. At any
time T , only one operation (e.g., document insertion and cluster merge) can be
performed. In addition, T is increased by one only when an operation is per-
formed.
6 These event clusters are defined at level 1. Note that level 0 corresponds to the lowest

level in a cluster tree (i.e., each document itself forms a singleton cluster at level
0). Thus, clusters at level 1 are expected to contain similar documents on a certain
event (i.e., event clusters) while clusters at level 2 are expected to contain similar
documents on a certain topic (i.e., topic clusters).

100 Seokkyung Chung and Dennis McLeod

Let df i(T) be the document frequency of a term ti in whole document dataset
at time T . Then, the document frequency of ti at time T +1 is defined as follows:

df i(T + 1) =
{

df i(T) + 1, if d∗ is inserted at T and d∗ contains ti,
df i(T), Otherwise

(6)

Let df ij
IN(T) be the document frequency of a term ti within a Cj at time T .

Then df ij
IN (T + 1) is recursively defined as follows:

df ij
IN (T +1)=

{
df ij

IN (T)+1, if d∗ is inserted to Cj at T and d∗ contains ti,
df ij

IN (T), Otherwise
(7)

We denote K(T) as a number of clusters at level 1 at time T . Then, K(T +1)
is defined as follows:

K(T + 1) =

⎧⎨
⎩

K(T), if d∗ is inserted to an existing cluster at T
K(T) + 1, if d∗ itself forms a new cluster at T
K(T)− 1, if two clusters are merged at T

(8)

Although df i(T + 1) − df ij
IN could be considered for representing how much

ti occurs outside Cj at T + 1, it is not sufficient if our goal is to quantify how
much ti is informative for Cj . This is because the number of clusters can also
affect on how much ti discriminates Cj from other clusters. Thus, df ij

OUT (T +1),
which represents how much ti occurs outside Cj at time T + 1, can be defined
as follows:

df ij
OUT (T + 1) =

df i(T + 1)− df ij
IN (T + 1)

K(T + 1)− 1
(9)

Finally, the selectivity of a term ti for the cluster Cj at time T + 1 is defined
as follows:

Selij(T + 1) = log
df ij

IN (T + 1)
df ij

OUT (T + 1)
(10)

In sum, Equation (10) assigns more weight to the terms occurring frequently
within Cj , and occurring rarely outside of Cj . Therefore, a term with high se-
lectivity for Ci can be a candidate for STCi .

Based on the definition of ST , the proposed hierarchical clustering algorithm
is described. While clusters at level 1 are generated using the algorithm in Fig-
ure 3, if no more documents are inserted to a certain cluster at level 1 during the
pre-defined time interval, then we assume that the event for the cluster ends,7

and associate ST with this cluster at level 1. We then perform a neighborhood
search for this cluster at level 2. Since ST reflects the most specific characteris-
tics for the cluster, it is not helpful if two topically similar clusters (but different

7 This assumption is based on the temporal proximity of an event [48].

Dynamic Pattern Mining: An Incremental Data Clustering Approach 101

events) need to be merged. Hence, when we build a vector for Cj
i , terms in ST

(for Cj
i) are not included for building a cluster vector.

At this moment, it is worthwhile to compare our algorithm with the SNN
approach [24, 15]. The basic strategy of SNN clustering is as follows: It first con-
structs the nearest neighbor graph from the sparsified similarity matrix, which is
obtained by keeping only k-nearest neighbor of each entry. Next, it identifies rep-
resentative points by choosing the points that have high density, and removes
noise points that have low density. Finally, it takes connected components of
points to form clusters.

Event Specific features

Court trial 1 winona, ryder, actress, shoplift, beverly

Court trial 2 andrea, yates, drown, insanity

Court trial 3 blake, bakley, actor

Court trial 4 moxley, martha, kennedy, michael

Kidnapping 1 elizabeth, smart, utah, salt, lake

Kidnapping 2 jessica, holly, soham, cambridgeshire, england

Kidnapping 3 weaver, ashlei, miranda, gaddis

Kidnapping 4 avila, samantha, runnion

Earthquake 1 san, giuliano, puglia, italy, sicily, etna

Earthquake 2 china, bachu, beijing, xinjiang

Earthquake 3 algeria, algerian

Earthquake 4 iran, qazvin

Table 4. A sample specific terms for the clusters at level 1. The term with
regular font denotes NE. Thus, this supports the argument that NE plays a key
role in defining specific details of events

The key difference between SNN and our approach is that SNN is defined on
static datasets while ours can deal with incremental datasets. The re-clustering
phase, and special data structures (e.g., DCF or signature vector) make our algo-
rithm more suitable for incremental clustering than SNN. The second distinction
is how a neighborhood is defined. In SNN, a neighborhood is defined as a set of
k-nearest neighbors while we use ε-neighborhood. Thus, as discussed in Han et
al. [21], the neighborhood constructed from k-nearest neighbors is local in that
the neighborhood is defined narrowly in dense regions while it is defined more
widely in sparse regions. However, for document clustering, a global neighbor-
hood approach produces more meaningful clusters. The third distinction is that
we intend to build a cluster hierarchy incrementally. In contrast, SNN does not
focus on hierarchical clustering. Finally, our algorithm can easily identify sin-
gleton clusters. This is especially important in our application since an outlier
document on a in a news stream may imply a valuable fact (e.g., a new event or
technology that has not been mentioned in previous articles). In contrast, SNN
overlooks the importance of singleton clusters.

102 Seokkyung Chung and Dennis McLeod

Topic Specific features

Court trial attorney court defense evidence jury kill law legal
murder prosecutor testify trial

Kidnapping abduct disappear enforce family girl kidnap miss
parent police

Earthquake body collapse damage earthquake fault hit injury
magnitude quake victim

Airplane crash accident air aircraft airline aviate boeing collision crash
dead flight passenger pilot safety traffic warn

Table 5. A sample specific terms for the clusters at level 2

4.4 Building a Topic Ontology

A topic ontology is a collection of concepts and relations. One view of a concept
is as a set of terms that characterize a topic. We define two generic kinds of
relations, specialization and generalization. The former is useful when refining a
query while the latter can be used when generalizing a query to increase recall
or broaden the search.

Event General features

Court trial 1 arm arrest camera count delay drug hill injury order
store stand target victim

Table 6. General terms for the court trial cluster 1 in Table 4

Table 4 and Table 5 illustrate the sample specific terms for the selected
events/topics. As shown, with respect to the news event, we observed that the
specific details are captured by the lower levels (e.g., level 1), while higher levels
(e.g., level 2) are abstract. We can also generate general terms for the node,
which is defined as follows:

Definition 7. General term (GT). A general term for a cluster Ci is a term,
which frequently occurs within a cluster Ci, and also frequently occurs outside of
Ci. A collection of general terms for Ci is denoted by GTCi .

Thus, in comparison with ST, the selectivity of GT is less than that of ST. Those
ST and GT constitute the concepts of a topic ontology.8

Table 6 shows GT for the “court trial 1” cluster in Table 4. When the
“Winona Ryder court trial” cluster (C1) is considered, STC1 represents the most
specific information for “Winona Ryder court trial event”, GTC1 carries the next

8 There are two thresholds (for selectivity) that for ST (λ1) and GT (λ2), which are
determined by experiments.

Dynamic Pattern Mining: An Incremental Data Clustering Approach 103

most specific information for the event, and specific terms for the court trial clus-
ter describe the general information for the event. Therefore, we can conclude
that a topic ontology can characterize a news topic at multiple levels of abstrac-
tion.

Human-understandable information needs to be associated with cluster struc-
ture such that clustering results are easily comprehensible to users. Since a topic
ontology provides an interpretation of a news topic at multiple levels of detail,
an important use of a topic ontology is automatic cluster labeling. In addition,
a topic ontology can be effectively used for suggesting alternative queries in
information retrieval.

There exists research work on extraction of hierarchical relations between
terms from a set of documents [17, 45] or term associations [46]. However, our
work is unique in that the topical relations are dynamically generated based on
incremental hierarchical clustering rather than based on human defined topics
such as Yahoo directory (http://www.yahoo.com).

Sample topic Sample events

Earthquake Algeria earthquake, Alaska earthquake, Iran earthquake, etc

Flood Russia flood, Texas flood, China flood, etc

Wildfire Colorado wildfire, Arizona wildfire, New Jersey wildfire, etc

Airplane crash Ukraina airplane crash, Taiwan airplane crash, etc

Court trial David Westerfield, Andrea Yates, Robert Blake, etc

Kidnapping Smantha Runnion, Elizabath Smart, Patrick Dennehy, etc

National Security Mailbox pipebomb, Shoebomb, Dirty bomb, etc

Health 2002-West nile virus, 2003-West nile virus, SARS, etc

Table 7. Examples for selected topics and events

5 Experimental Results for Information Analysis

In this section, we present experimental results that demonstrate the effective-
ness of the information analysis component. Section 5.1 illustrates our experi-
mental setup. Experimental results are presented in Section 5.2.

5.1 Experimental Setup

For the empirical evaluation of the proposed clustering algorithm, approximately
3,000 news articles downloaded from CNN (http://www.cnn.com) are used. The
total number of topics and events used in this research is 15 and 180, respectively.
Thus, the maximum possible number of clusters we can obtain (at level 1) is 180.
Note that the number of documents for events ranges from 1 to 151. Table 7
illustrates sample examples for topics and events.

104 Seokkyung Chung and Dennis McLeod

The quality of a generated cluster hierarchy was determined by two metrics,
precision and recall. Let Tr be a class on topic/event r.9 Then, a cluster Cr is
referred to as a topic r cluster if and only if the majority of subclusters for Cr

belong to Tr. The precision and recall of the clustering at level i (where Ki is
the number of clusters at level i) then can be defined as follows:

Pi =
1

Ki

Ki∑
r=1

|Cr ∩ Tr|
|Cr|

(11)

Ri =
1

Ki

Ki∑
r=1

|Cr ∩ Tr|
|Tr|

(12)

Thus, if there is large topic overlap within a cluster, then the precision will
drop down. Precision and recall are relevant metrics in that they can measure
“meaningful theme”. That is, if a cluster (C) is about “Turkey earthquake”,
then C should contain all documents about ‘Turkey earthquake”. In addition,
documents, which do not talk about ‘Turkey earthquake”, should not belong
to C.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

epsilon

k1
/k

2

Fig. 5. Illustration of ε”’s sensitivity to clustering results

5.2 Experimental Results

For the purpose of comparison, we decided to use K-means clustering. However,
since K-means is not suitable for incremental clustering, K-means clustering is
9 A class is determined by ground truth dataset. Thus, a class on topic/event r contains

all documents on r, and does not contain any other document on other topics or
events. In contrast, a cluster is determined by clustering algorithms. Note that there
exists 1-1 mapping between event and cluster at level 1 of hierarchy, and topic and
cluster at level 2 of hierarchy.

Dynamic Pattern Mining: An Incremental Data Clustering Approach 105

performed retrospectively on datasets. In contrast, the proposed algorithm was
tested on incremental datasets after learning IDF . Moreover, since we already
knew the number of clusters at level 1 based on the ground-truth data, K could
be fixed in advance. Furthermore, to overcome K-mean’s sensitivity to initial
seed selections, a seed p is selected with the condition that the chosen seeds are
far from each other. Since we deal with document datasets, the intelligent seed
selection10 can be easily achieved by using an inverted index.

Parameterization The size of a neighborhood, which is determined by ε, in-
fluences clustering results. To observe the effect, we performed an experiment as
follows: From 3,000 documents, we organized sample datasets, which consists of
500 documents in 50 clusters of different sizes. Then, while changing the value
of ε, our clustering was conducted on the dataset.

In Figure 5, the x-axis represents the value of ε, and the y-axis represents
the number of clusters in the result (k1) over the number of clusters determined
by ground-truth data (k2). Thus, if the clustering algorithm guesses the exact
number of clusters, then the value of y corresponds to one. As observed in Fig-
ure 5, we could find the best result when ε varies between 0.1 and 0.25, i.e., the
algorithm guessed the exact number of clusters. If the value of ε was too small,
then the algorithm found a few large-size clusters. In contrast, many small-size
clusters were identified if the value ε is too large. Thus, the proposed algorithm
might be considered as sensitive to the choice of ε. However, once the value
of ε (i.e., ε = 0.2) was fixed, the approximately right number of clusters were
always obtained whenever we performed clustering on different datasets. There-
fore, the number of clusters does not need to be given to our algorithm as an
input parameter, which is a key advantage over partition-based clustering.

Ability to Identify Clusters with Same Density, But Different Shapes
To illustrate the simple example for the shapes of document clusters with the
same density, approximately the same number of documents were randomly cho-
sen from two different events (a wildfire event and a court trial event), and the
document×term matrix on this dataset is decomposed by Singular Value De-
composition. By keeping the first two largest singular values, the dataset could
be projected onto a 2D space corresponding to principal components. Figure 6
illustrates the plot of the documents. As shown, since the shape of document
cluster can be arbitrary, a shape of document cluster cannot be assumed in
advance (e.g., hyper-sphere in k-means).

To test the ability of identifying the different shapes of clusters, we organized
datasets where each cluster consists of approximately the same number of docu-
ments (but as illustrated in Figure 6, each document cluster will have a different
shape). As shown in Figure 7, the proposed algorithm outperforms the modified

10 Two documents are mutually orthogonal if they share no terms. This holds true
when the Cosine metric is used for the similarity measure.

106 Seokkyung Chung and Dennis McLeod

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
a document on wildfire
a document on court trial

Fig. 6. Illustration of non-spherical document clusters

Precision Recall

Level 1 91.5% 90.3%

Level 2 100% 76.4%

Precision Recall

Level 1 83.1% 86.7%

(a) Proposed algorithm (b) Modified K-means

Fig. 7. Comparison of the clustering algorithms on datasets-1. Datasets-1 con-
sists of five different datasets where each cluster has approximately the same
density. The values of precision and recall shown in this table are obtained by
averaging the accuracy of the algorithm on each dataset

Precision Recall

87.5% 88.6%

Precision Recall

78.7% 79.5%

(a) Proposed algorithm (b) Modified k-means algorithm

Fig. 8. Comparison of the accuracy of clustering algorithms at level 1 on
datasets-2. Datasets-2 consists of ten different datasets where each cluster has
arbitrary numbers of documents. The values of precision and recall shown in this
table are obtained by averaging the accuracy of the algorithm on each dataset

Dynamic Pattern Mining: An Incremental Data Clustering Approach 107

K-means algorithm in terms of precision and recall.11 This is because the pro-
posed algorithm measures similarity between a cluster and a neighborhood of a
document while K-means clustering measures similarity between a cluster and a
document. Note that 10% increase in accuracy is significant by considering the
fact that we provided the correct the number of clusters (K) and choose the best
initial seed points for K-means.

As illustrated in Figure 7, the recall of our algorithm decreases as the level
increases. The main reason for this poor recall at level 2 is related to the char-
acteristics of news articles. As discussed, a named entity (NE) plays a key role
in defining who/when/where of an event. Hence, NE contributes to high quality
clustering at level 1. However, at level 2, since the strength of topical terms are
not very strong (unlike named entities), it was not easy to merge different event
clusters (belonging to the same topic) into a same topical cluster.

Ability to Discover Clusters with Different Densities and Shapes Since
the sizes of clusters can be of arbitrary numbers, clustering algorithms must be
able to identify the clusters with wide variance in size. To test the ability of
identifying clusters with different densities, we organized datasets where each
dataset consists of document clusters with diverse densities. As shown in Fig-
ure 8, when the density of each cluster is not uniform, the accuracy of the
modified K-means clustering algorithm degraded. In contrast, the accuracy of
our algorithm remains similar. Therefore, based on the experimental results on
datasets-1 and datasets-2, we can conclude that our algorithm has better ability
to find arbitrary shapes of clusters with variable sizes than K-means clustering.

Event Confusion There are some events that we could not correctly sepa-
rate. For example, on the wildfire topic, there exist different events, such as
“Oregon wildfire”, “Arizona wildfire”, etc. However, at level 1, it was hard to
separate those events into different clusters. Table 8 illustrates the reason for
this event confusion at level 1. As shown, term frequency of topical terms (e.g.,
fire, firefighter, etc) is relatively higher than that of named entities (e.g., Col-
orado, Arizona, etc). Similarly, for the airplane crash topic, it was difficult to
separate different airplane crash events since distinguishing lexical features like
plane number has extremely low term frequency.

The capability of distinguishing different events on the same topic is impor-
tant. One possible solution is to use temporal information. Rational behind this
approach is based on the assumption that news articles on same event are tem-
porally proximate, However, if two events occur during the same time interval,
then this temporal information might not be helpful. Another approach is to
use classification, i.e., training dataset is composed of multiple topic classes, and
each class is composed of multiple events. After then, we learn the weight of

11 We did not compare the modified k-means algorithm with ours at level 2. To do
this, we also need to develop a feature selection algorithm to extend the modified
K-means algorithm into a hierarchical version.

108 Seokkyung Chung and Dennis McLeod

topic-specific terms and named entities [49]. However, this approach is not rele-
vant since we cannot accommodate the dynamically changing topics. Therefore,
we need further study for the event confusion.

6 Conclusion and Future Work

We presented the mining framework that is vital to intelligent information re-
trieval. An experimental prototype has been developed, implemented and tested
to demonstrate the effectiveness of the proposed framework. In order to accom-
modate topics that change over time, we developed the incremental document
clustering algorithm based on a neighborhood search. The presented clustering
algorithm could identify news event clusters as well as topic clusters incremen-
tally. We also showed that presented topic ontologies could characterize news
topics at multiple levels of abstraction.

Colorado wildfire Num Arizona wildfire Num

1 fire 14.33 fire 17.68

2 forest 5.72 rodeo 4.76

3 firefighter 4.83 blaze 4.38

4 acre 3.94 firefighter 4.21

5 evacuate 3.77 burn 3.92

6 hayman 3.22 arizona 3.46

7 blaze 3.11 paxon 3.15

8 weather 3.06 acre 3.00

9 official 2.89 wildfire 3.00

10 national 2.83 chediski 2.89

11 burn 2.72 resident 2.61

12 area 2.66 center 2.46

13 wildfire 2.56 national 2.46

14 denver 2.43 area 2.46

15 colorado 2.33 evacuate 2.65

Table 8. Top 15 high term frequency words in Colorado wildfire and Arizona
wildfire event. Num represents the average number of term occurrences per doc-
ument in each event (without document length normalization). Terms with italic
font carry event-specific information for each wildfire event

We intend to extend this work into the following five directions. First, al-
though a document hierarchy can be obtained using unsupervised clustering,
as shown in Aggarwal et al. [1], the cluster quality can be enhanced if a pre-
existing knowledge base is exploited. That is, based on this priori knowledge,
we can have some control while building a document hierarchy. Second, besides
exploiting text data, we can utilize other information since Web news articles are
composed of text, hyperlinks, and multimedia data. For example, as described

Dynamic Pattern Mining: An Incremental Data Clustering Approach 109

in [25], both terms and hyperlinks (which point to related news articles or Web
pages) can be used for feature selection. Third, coupling with WordNet [36], we
plan to extend the topic ontology learning framework to accommodating rich
semantic information extraction. To this end, we will annotate a topic ontology
within Protégé [38, 54]. Forth, our clustering algorithm can be tested on other
datasets like TDT corpus [53]. Finally, to strengthen our work in terms of gen-
erality, we are in the process of investigating the potential applicability of our
method to earth science information streams.

7 Acknowledgement

This paper is based on our previous work [12], which was presented at the Second
International Conference on Ontologies, DataBases, and Applications of Seman-
tics for Large Scale Information Systems (ODBASE 2003), Catania, Sicily, Italy,
November 2003. We would like to thank the audience and anonymous reviewers
of ODBASE 2003 for their helpful comments. We also would like to appreciate
anonymous reviewers of this special issue for their valuable comments. Finally,
we would like to thank Jongeun Jun for helpful discussions on the clustering
algorithm.

This research has been funded in part by the Integrated Media Systems Cen-
ter, a National Science Foundation Engineering Research Center, Cooperative
Agreement No. EEC-9529152.

References

[1] C.C. Aggarwal, S.C. Gates, and P.S. Yu. On the merits of using supervised cluster-
ing for building categorization systems. In Proceedings of the 5th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 1999.

[2] E. Agirre, O. Ansa, E. Hovy, and D. Martinez. Enriching very large ontologies
using the WWW. In Proceedings of the ECAI Workshop on Ontology Learning,
2000.

[3] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence
database. In Proceedings of International Conference of Foundations of Data Or-
ganization and Algorithms, 1993.

[4] J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang. Topic detection
and tracking: pilot study final report. In Proceedings of the DARPA Broadcast
News Transcription and Understanding Workshop, 1998.

[5] J. Allan, V. Lavrenko, and H. Jin. First story detection in TDT is hard. In Pro-
ceedings of the 9th ACM International Conference on Information and Knowledge
Management, 2000.

[6] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an effi-
cient and robust access method for points and rectangles. ACM SIGMOD Record,
19(2):322-331, 1990.

[7] S. Berchtold, D.A. Keim, and H.P. Kreigel. The X-tree: An index structure for
high dimensional data. In Proceedings of the 22nd International Conference on
Very Large Data Bases, 1996.

110 Seokkyung Chung and Dennis McLeod

[8] M.W. Berry, S.T. Dumais, and G.W. O’Brien. Using linear algebra for intelligent
information retrieval. SIAM Review, 37(4):573-595, 1995.

[9] P.S. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to large
databases. In Proceedings of the 4th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 1998.

[10] T. Brants, F. Chen, and A. Farahat. A system for new event detection. In
Proceedings of the 26th International ACM SIGIR International Conference on
Research and Development in Information Retrieval, 2003.

[11] K. Chan, and A.W. Fu. Efficient time series matching by wavelets. In Proceedings
of IEEE International Conference on Data Engineering, 1999.

[12] S. Chung, and D. McLeod. Dynamic topic mining from news stream data. In
Proceedings of the 2nd International Conference on Ontologies, Databases, and
Application of Semantics for Large Scale Information Systems, 2003.

[13] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification (2nd Ed.). Wiley,
New York, 2001.

[14] D.M. Dunlavy, J. Conroy, and D.P. O’Leary. QCS: a tool for querying, cluster-
ing, and summarizing documents. In Proceedings of Human Language Technology
Conference, 2003.

[15] L. Ertöz, M. Steinbach, and V. Kumar. Finding clusters of different sizes, shapes,
and densities in noisy, high dimensional data. In Proceedings of the 3rd SIAM
International Conference on Data Mining, 2003.

[16] U.M. Fayyad, C. Reina, and P.S. Bradley. Initialization of iterative refinement
clustering algorithms. In Proceedings of the 4th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 1998.

[17] E.J. Glover, D.M. Pennock, S. Lawrence, and R. Krovetz. Inferring hierarchical
descriptions. In Proceedings of the 2002 ACM CIKM International Conference on
Information and Knowledge Management, 2002.

[18] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm for
large databases. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, 1998.

[19] S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for
categorical attributes. In Proceedings of the 15th International Conference on Data
Engineering, 1999.

[20] A. Guttman. R-Trees: A dynamic index structure for spatial searching. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
1985.

[21] J. Han, and M, Kamber. Data mining: concepts and techniques. Morgan Kaufmann
Publishers, 2000.

[22] V. Hatzivassiloglou, L. Gravano, and A. Maganti. An investigation of linguistic
features and clustering algorithms for topical document clustering. In Proceed-
ings of the 23rd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2000.

[23] P. J. Huber. Robust Statistics. Wiley, New York, 1981.
[24] R.A. Jarvis, and E.A. Patrick. Clustering using a similarity measure based on

shared near neighbors. IEEE Transactions on Computers, C22, 1025-1034, 1973.
[25] T. Joachims, N. Cristianini, and J. Shawe-Taylor. Composite kernels for hypertext

categorisation. In Proceedings of the 18th International Conference on Machine
Learning, 2001.

[26] G. Karypis, E.H. Han, and V. Kumar. CHAMELEON: a hierarchical clustering
algorithm using dynamic modeling. IEEE Computer, 32(8):68-75, 1999.

Dynamic Pattern Mining: An Incremental Data Clustering Approach 111

[27] L. Khan, and D. McLeod. Effective retrieval of audio information from annotated
text using ontologies. In Proceedings of ACM SIGKDD Workshop on Multimedia
Data Mining, 2000.

[28] L. Khan, and D. McLeod. Disambiguation of annotated text of audio using onolo-
gies. In Proceeding of ACM SIGKDD Workshop on Text Mining, 2000.

[29] L. Khan, D. McLeod, and E.H. Hovy. Retrieval effectiveness of an ontology-based
model for information selection. The VLDB Journal, 13(1):71-85, 2004.

[30] B. Larsen, and C. Aone. Fast and effective text mining using linear-time document
clustering. In Proceedings of the 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 1999.

[31] X. Liu, Y. Gong, W. Xu, and S. Zhu. Document clustering with cluster refine-
ment and model selection capabilities. In Proceedings of the 25th ACM SIGIR
International Conference on Research and Development in Information Retrieval,
2002

[32] A. Maedche, and S. Staab. Ontology learning for the Semantic Web. IEEE
Intelligent Systems, 16(2):72-79, 2001.

[33] A. McCallum, K. Nigam, and L.H. Ungar. Efficient clustering of high-dimensional
data sets with application to reference matching. In Proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2000.

[34] K.R. McKeown, R. Barzilay, D. Evans, V. Hatzivassiloglou, J.L. Klavans, A.
Nenkova, C. Sable, B. Schiffman, and S. Sigelman. Tracking and summarizing
news on a daily basis with Columbia’s Newsblaster. In Proceedings of the Human
Language Technology Conference, 2002.

[35] I.D. Melamed. Automatic evaluation and uniform filter cascades for inducing
n-best translation lexicons. In Proceedings of the 3rd Workshop on Very Large
Corpora, 1995.

[36] G. Miller. Wordnet: An on-line lexical database. International Journal of Lexi-
cography, 3(4):235-312, 1990.

[37] R.T. Ng, and J. Han. Efficient and effective clustering methods for spatial data
mining. In Proceedings of the 20th International Conference on Very Large Data
Bases, 1994.

[38] N.F. Noy, M. Sintek, S. Decker, M. Crubezy, R.W. Fergerson, and M.A. Musen.
Creating Semantic Web contents with Protégé-2000. IEEE Intelligent Systems,
6(12):60-71, 2001.

[39] D. Pelleg, and A. Moore. X-means: Extending K-means with efficient estimation
of the number of clusters. In Proceedings of the 17th International Conference on
Machine Learning, 2000.

[40] M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130-137, 1980.
[41] D.R. Radev, S. Goldensohn, Z. Zhang, and R.S. Raghavan. Newsinessence: a sys-

tem for domain-independent, real-time news clustering and multi-document sum-
marization. In Proceedings of Human Language Technology Conference, 2001.

[42] D.R. Radev, S. Goldensohn, Z. Zhang, and R.S. Raghavan. Interactive, domain-
independent identification and summarization of topically related news. In Pro-
ceedings of the 5th European Conference on Research and Advanced Technology for
Digital Libraries, 2001.

[43] L. Ralaivola, and F. d’Alché-Buc. Incremental support vector machine learning:
a local approach. In Proceedings of the Annual Conference of the European Neural
Network Society, 2001.

[44] G. Salton, and M.J. McGill. Introduction to modern information retrieval.
McGraw-Hill, New York, 1983.

112 Seokkyung Chung and Dennis McLeod

[45] M. Sanderson, and W.B. Croft. Deriving concept hierarchies from text. In Pro-
ceedings of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, 1999.

[46] D. Song, and P. D. Bruza. Towards context sensitive information inference. Jour-
nal of the American Society for Information Science and Technology, 54(4):321-334,
2003.

[47] E.M. Voorhees. Query expansion using lexical-semantic relations. In Proceedings
of the 17th International ACM SIGIR Conference on Research and Development
in Information Retrieval, 1994.

[48] Y. Yang, J. Carbonell, R. Brown, T. Pierce, B.T. Archibald, and X. Liu. Learn-
ing approaches for detecting and tracking news events. IEEE Intelligent Systems,
14(4):32-43, 1999.

[49] Y. Yang, J. Zhang, J. Carbonell, and C. Jin. Topic-conditioned novelty detection.
In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2002.

[50] L.A. Zadeh. Similarity relations and fuzzy orderings. Information Sciences,
3(2):177-200, 1971.

[51] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering
method for very large databases. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 1996.

[52] Y. Zhao, and G. Karypis. Evaluations of hierarchical clustering algorithms for
document datasets. In Proceedings of the 11th ACM International Conference on
Information and Knowledge Management, 2002.

[53] Nist topic detection and tracking corpus.
http://www.nist.gov/speech/tests/tdt/tdt98/index.htm, 1998.

[54] Protégé WordNet tab.
http://protege.stanford.edu/plugins/wordnettab/

A Knowledge Network Approach for Implementing
Active Virtual Marketplaces

Minsoo Lee1, Stanley Y.W. Su2, Herman Lam2

1 Dept. Computer Science and Engineering, Ewha Womans University,
11-1 Daehyun-Dong, Seodaemoon-Ku, Seoul, Korea 120-750

mlee@ewha.ac.kr
2 Database Systems Research and Development Center

University of Florida, Gainesville, Florida 32611, U.S.A
{su, hlam}@cise.ufl.edu

Abstract. The current Web technology is not suitable for representing
knowledge nor sharing it among organizations over the Web. There is a rapidly
increasing need for exchanging and linking knowledge over the Web, especially
when several sellers and buyers come together on the Web to form a virtual
marketplace. Virtual marketplaces are increasingly being required to become
more intelligent and active, thus leading to an active virtual marketplace
concept. This paper explains an infrastructure called the knowledge network
that enables sharing of knowledge over the Web and thus effectively supports
the formation of virtual marketplaces on the Web. The concept of an active
virtual marketplace can be realized using this infrastructure by allowing buyers
and sellers to effectively specify their knowledge in the form of events, triggers,
and rules. The knowledge network can actively distribute and process these
knowledge elements to help buyers and sellers to easily find each other. An
example active virtual marketplace application has been developed using the
knowledge network.

 Keywords: virtual marketplace, knowledge network

1. Introduction

Virtual Marketplaces enable buyers and suppliers of products to meet together in
cyberspace and exchange information about products. Buyers look for product items
that are wanted while suppliers provide information regarding their available products.
The virtual marketplace is becoming increasingly popular on the Web. However, the
current technology still has certain limitations that make the virtual marketplace a
passive meeting place where buyers and suppliers have to perform many manual tasks
to find each other or obtain information from each other. We find the necessity of an
active virtual marketplace where such operations can be automated and more
intelligence could be built into the virtual marketplace.

1 Contact author: Tel +82-2-3277-3401, Fax: +82-2-3277-2306

S. Spaccapietra et al. (Eds.): Journal on Data Semantics II, LNCS 3360, pp. 113-135, 2004.
 Springer-Verlag Berlin Heidelberg 2004

114 Minsoo Lee, Stanley Y.W. Su, and Herman Lam

We have previously developed the concept of knowledge networks in order to build
an infrastructure that can embed intelligence into the Web [1]. Knowledge networks
can link knowledge over the Web among publishers of knowledge and subscribers of
knowledge. By linking knowledge it effectively enables real-time notification to
subscribers of knowledge and also processing of knowledge.

Using the knowledge network and applying it to the virtual marketplace domain,
we can easily and effectively include the knowledge of both buyers and sellers into
the Web infrastructure and help each other find the right counterpart in a very active
and automated fashion. We have developed such an application to demonstrate how
the active virtual marketplace can be realized.

In the knowledge network, buyers and sellers can specify their knowledge in terms
of events, triggers, and rules. Events enable buyers and sellers to monitor interesting
things that happen within the virtual marketplace. Once an interesting thing happens,
information is automatically passed in the form of events to buyers and sellers.
Buyers and sellers can also populate the knowledge network with rules that are
invoked by such events. The rules will carry out business tasks that are required by
the buyers and sellers. Complex relationships among multiple events and multiple
rules can also exist, which can be specified by triggers. The knowledge network can
enhance the existing Web infrastructure by only adding special components to Web
servers, and therefore is a simple yet powerful approach for implementing active
virtual marketplaces on the Web.

The organization of this paper is as follows. Section 2 provides a survey of related
work regarding virtual marketplaces and also rule systems and event notification
architectures. Section 3 discusses the requirements for an active virtual marketplace.
Section 4 explains the knowledge network concept. Section 5 discusses how the
knowledge network can be built and deployed. Section 6 describes an active virtual
marketplace application developed with the knowledge network. Section 7 deals with
the implementation of the knowledge network. Section 8 gives the summary and
conclusion.

2. Related Research

Virtual marketplaces have become very popular with the rise of the Internet. Virtual
marketplaces have intermediaries that can reduce the gap between suppliers and
consumers of products [2]. These intermediaries are currently in the form of Web
sites that bring suppliers and consumers together. There have been large and small
virtual marketplaces being formed in several industries such as the food industry,
automobile industry, and service professionals in addition to the popular general
auction sites. Ford, DaimlerChrysler, and General Motors have developed a business
exchange, Ebay is very well-known for its vast number of products available for
auction, handshake.com and servicelane.com provide a site for professional services
[3].

The benefits of virtual marketplaces are improved process efficiencies, improved
supply chain efficiencies, better control over the process, convenience, access to
additional suppliers/buyers.

A Knowledge Network Approach for Implementing Active Virtual Marketplaces 115

There are several limitations to the current technology that prohibit the virtual
marketplace from becoming an active meeting place. Suppliers of products have to
actively monitor incoming buyers and try to contact the buyers to see if they have any
matching interests to make a deal. On the other hand, buyers have to seek the right
supplier that can satisfy their requirements. The suppliers and buyers could be wasting
a significant amount of time during this process even though they are concentrating
on this single task and not being able to take on any other tasks. Furthermore, after
they have found each other, many more tasks could be automated.

We suggest that this process can be automated by inputting the right knowledge
from both the supplier and buyer into the virtual marketplace. The knowledge is
modeled as events, triggers, and rules. The significant progress in past research
regarding event and rule systems has provided a basis in our development of a new
knowledge model.

The concept of rules was originally introduced in the research areas of artificial
intelligence and expert systems. The rules were soon incorporated into databases to
create a new category of databases, namely, active databases [4,5]. Event-Condition-
Action (ECA) rules have been used in many of these systems. They are composed of
three parts: event, condition, and action. The semantics of an ECA rule is, “When an
event occurs, check the condition. If the condition is true, then execute the action.”
The event provides a finer control as to when to evaluate the condition and gives more
active capabilities to the database systems. Rules can automatically perform security
and integrity constraint checking, alert people of important situations, enforce
business policies and regulations, etc.

WebRules [6] is a framework to use rules to integrate servers on the Internet. The
WebRules server has a set of built-in events that can notify remote systems, and has a
library of system calls that can be used in a rule to connect Web servers. However, it
does not include concepts such as event and rule publishing or event filtering.
WebLogic [7] also includes a basic form of rules, which are called actions. These
actions need to be provided to the WebLogic server at the time when an application is
registering for an event. These actions are actually specified with program codes
rather than a high-level specification facility.

Several content-based event notification architectures have been recently proposed
to provide an abstraction of the communication infrastructure on the Internet. These
architectures focus on providing a scalable architecture for event delivery, as well as a
mechanism to selectively subscribe to information. Siena [8] proposes a mechanism
to maximize the expressiveness of a language to specify filters and patterns while not
degrading the scalability. NeoNet [9] provides a rule-based message routing,
queueing and formatting system. Keryx [10] is a language and platform independent
infrastructure to distribute events on the Internet and is based on the publish-subscribe
model. JMS [11] provides reliable, asynchronous communication between
components in a distributed computing environment. CORBA Notification Service
[12] uses an event channel concept and extends the Event Service by providing event
filtering and quality of service.

Languages and models for specifying complex relationships among events have
also been proposed by several researchers in the database area. HiPAC[13], Ode[14]
are such systems that looked into the problem of relating multiple events and
examining the semantics of the relationships. The events were classified into several
different types, and operators that can show the relationship among multiple events

116 Minsoo Lee, Stanley Y.W. Su, and Herman Lam

were proposed. Efficient processing mechanisms that use tree-based pipelined data
structures were also proposed. However, these systems focused on the problem in a
single system context, and did not consider publish-subscribe mechanisms and
distributed processing mechanisms in a Web environment. This composite event
concept is incorporated into the trigger part of our knowledge model.

3. Requirements for an Active Virtual Marketplace

The currently implemented virtual marketplace configurations have significant
limitations in terms of interactions among the participants of the marketplace. We
identify the cause of such limitations as being manual operations that heavily burden
the buyers, sellers, and coordinators of the marketplace. The following requirements
need to be satisfied in order to make the marketplace more active.

(1) Automatic notification mechanisms need to be provided to alert buyers and
sellers regarding new or changed information about their counter parties.

(2) Filtering mechanisms for accepting only the relevant information about their
interested products and prices, or other specific purchase conditions need to be
supported.

(3) An easy way to specify and establish business logic required by both the buyer
and seller needs to be supported within the marketplace.

(4) A flexible way to connect notifications to various business logic pieces needs to
be provided to encapsulate the complex transactions that occur between the buyers
and sellers.

The active virtual marketplace can be realized by employing the knowledge
network concept and adapt it to the requirements discussed above.

4. Overview of the Knowledge Network

The main goal of the knowledge network is to share the knowledge available on the
Internet among the users of the Internet. This would promote efficient exchange of
knowledge and the development of more organized and interconnected knowledge
among individual expertise that is currently isolated from other Web sites and users.

4.1. Events, Triggers, and Rules

The knowledge network is composed not only of data elements but also knowledge
elements which can be used to perform automatic reasoning and decision-making
tasks. In this work, knowledge elements are presented by events, triggers, and rules.
The events encapsulate timely information of what is happening on the Internet and
makes the knowledge network actively responsive without human intervention. The
rules express the decision-making factors allowing the intelligence of humans to be
embedded into the knowledge network. The triggers model complex relationships
among events and rules, checking histories of events and enabling various reasoning

A Knowledge Network Approach for Implementing Active Virtual Marketplaces 117

or activation sequences to reflect the complex decision making process. The detail
syntax of events, triggers, and rules can be found in [1]. The knowledge network has a
goal not just of sharing data but also sharing knowledge to make the Internet into a
more active, collaborative, and intelligent infrastructure. Figure 1 shows an example
of the Event-Trigger-Rule (ETR) model that is used for specifying knowledge in the
knowledge network.

E1 E2 E3

E1 or E2 or E3

E4 > E5

R1

R2 R3

R5R4

R6 R7

OR[1] AND

TRIGGER
EVENT

EVENT
HISTORY

RULE
STRUCTURE

Event: E3(String make,
Integer discountRate,
Date start, Date end)

Description : a promotion for
discounts on car sales

Rule : R3 (String make,
Integer discount)

Description: Purchase if discount
is more than 3% for a Ford

RuleVar: Integer purchaselimit;
Condition: [make=“Ford”]

discount > 3%
Action:

purchaselimit=GetLimit();
PurchaseCar(purchaselimit);

AltAction:
StoreInDB(make,discount);

Figure 1. Event, Trigger, and Rule Example

The example shows the definition of an event named E3 within the box on the
upper right hand side. The event notifies that a promotion for discounts on car sales is
going on. It can carry data values in the form of event parameters such as the make of
the car as a string type, the discount rate as an integer type, and the dates that the
discount starts and ends.

A rule named R3 is shown within the box on the lower right hand side. The rule
automatically initiates the purchasing transaction if it finds that the discount is more
than 3% for a Ford. The rule accepts two parameters: a string that has the make
information, and an integer that has the discount rate information. A Rule Variable
named purchaselimit is used as a temporary local variable to be used within the rule
body. Other types of rule variables such as persistent and existing type rule variables
exist. The persistent type will persist the value of the variable and enables multiple
rules to share a value beyond a single rule execution. The existing type references
external servers modeled as objects. Rules can invoke methods on remote servers via
the existing type variable. This makes the rules more powerful as they can act as the

118 Minsoo Lee, Stanley Y.W. Su, and Herman Lam

“glue” to several distributed systems. More details are provided in section 7.1 as well
as in [1]. The rule has a Condition part that needs to be evaluated in order to decide
whether to next execute the Action part or the Alternative Action part of the rule, or
just skip the rule. If the Condition evaluates to true, the Action part is executed. If the
Condition evaluates to false, the Alternative Action part is executed. If the guarded
expression within the Condition evaluates to false, the rule is just skipped. The
guarded expression is surrounded with brackets. It is used as a mechanism to first
check basic essential conditions that are required for the rule execution to continue.
In R3 the guarded expression checks if the make is a Ford and if it turns out that it is
not a Ford, the rule execution will be immediately discontinued. However, if the make
is a Ford and the discount is larger than 3%, the purchasing operation is carried out.
Otherwise, the promotion information is just stored in a database.

The trigger is shown on the left hand side. The trigger is relating five events E1 to
E5 with seven rules R1 to R7. The trigger has three parts: Trigger event, Event history,
and Rule structure. The Trigger event part specifies the events that can initiate the
processing of the trigger. The events are OR-ed, which means that any one of the
events can initiate the processing of the trigger. The Event history checks for complex
relationships among events that have occurred. Several event relationships such as
different types of event sequences, timing constraints, number of occurrences, etc, are
possible. The Event history in Figure 1 checks if event E4 has happened before event
E5. The reason why the Triggering event and Event history were separated is because
of the processing overhead of the Event history. If only the Event history were
specified, then all events in the Event history need to be monitored and would create a
significant amount of burden on processing the trigger. Therefore, we explicitly
separate the Triggering event, and it becomes easy to monitor simple initiating events
of the trigger while checking complex relationships can follow afterwards. The rules
can be executed in various sequences as specified by the Rule structure. After R1 is
executed, R2 and R3 are executed in parallel. OR-type and AND-type
synchronization points exist. If any one of R3 or R4 finish, R6 can start. Only when
both R3 and R5 finish, R7 can start.

The trigger structure can also support the formation of a generic event which is
composed of a very complex structure of events. As an example, a company may
define a generic event named “interesting event” which has a flexible meaning and
can be raised by various types of source events in various combinations. The source
events can be specified in the Trigger Event and Event history part in a flexible
manner, while the Rule structure has a rule that posts the “interesting event”.

4.2. Architectural Framework

The knowledge network can enhance active collaboration of Web servers and users
on the Internet by providing a framework to (1) publish data, applications, constraints,
events, and rules, (2) register for subscription of events and deliver events to
subscribers, (3) define rules that are invoked by complex relationships among the
subscribed events.

The framework to accomplish these tasks is based on the idea of providing a
component that can be plugged into any standard Web server. This should allow the
Web servers that need to collaborate to have a symmetric architecture. Another

A Knowledge Network Approach for Implementing Active Virtual Marketplaces 119

technology that is needed to support this framework is event, trigger, and rule
processing capability being built into the component. This is the major part that
should be developed in order to provide any type of intelligent, distributed and
collaborative infrastructure. The idea of providing knowledge profiles for each user is
also adopted to support a wide variety of users on the Internet who wish to have their
own individually customized knowledge built into the applications.

E1 E2

R1
R2

F1

ETR Server

Event
Server

KPM

Publish
Events, Rules

E1, E2, R1, R2

Knowledge
Profile User A Knowledge

Web
Server

A

E1

R3
ETR Server

Event
Server

Publish
Events,
Rules

KPM
Knowledge
Profile User B

F2

E2

R4
ETR Server

Event
Server

Publish
Events,
Rules

KPM
Knowledge
Profile User C

Knowledge Web Server B Knowledge Web Server C

Event

Trigger

Rule

Filter

INTERNET

Provider

Subscriber Subscriber

Figure 2. Architectural framework of the knowledge network.

The architectural framework of the knowledge network shown in Figure 2 is used
to explain the key features of the knowledge network: publishing events and rules,
event filters, push-based event delivery, knowledge profile, and processing of triggers
and rules. In Figure 2, several Web servers are interconnected through the Internet.
Each server is extended with several components that form the basis of the knowledge
network. Only the extensions to the Web server are shown in the figure for simplicity.
We refer to a Web server with these extensions as a knowledge Web server (KWS).
Each KWS has an ETR Server which processes triggers and rules, an Event Server
which processes events and filters, and a Knowledge Profile Manager (KPM) which
manages the knowledge profiles. Assume that the knowledge Web server A takes the
role of a data provider who is user A and knowledge Web servers B and C are
maintained by two different users, namely, user B and user C, who consume
information from the knowledge Web server A. The users A, B, and C can connect to

120 Minsoo Lee, Stanley Y.W. Su, and Herman Lam

the sites KWS A, KWS B, and KWS C with a browser interface to the systems and
the Internet.

Data providers can provide data and define events and rules, and publish them on
web pages. Publishing of events will enable Web surfers to know what kind of data
can be delivered to them in a timely manner. Interested Web surfers can register for
the events and become subscribers of the event. Rules published by data providers
can perform several operations on the knowledge Web server of the data provider.
Subscribers of events can conveniently select these rules that will be executed
remotely on the data provider's knowledge Web server when the subscribed event
occurs. Figure 2 shows that the knowledge Web server A has published two events
E1 and E2, and two rules R1 and R2. User B has subscribed to event E1 and linked it
to rule R1, while user C has subscribed to event E2 and linked it to rule R2.

Event filter templates are provided by data providers to allow event subscribers to
more precisely specify the subset of the event occurrences in which they are
interested. The subscribers can give various conditions on the values that the event
carries. Only those event instances that satisfy the condition will be delivered to the
subscriber. By using event filters, only meaningful data will be provided to the
subscribers. Thus, network traffic can be significantly reduced. Figure 2 shows that
the event filter F1 is installed on event E1 by user B, while the event filter F2 is
installed on event E2 by the user C.

In a knowledge network, events are delivered via a push-based mechanism to
subscribers’ knowledge Web servers. When the event occurs, the push mechanism is
activated in order to deliver the event to a large number of knowledge Web servers in
a timely fashion. This push-based mechanism can radically change the paradigm of
how interactions on the Internet are performed. Moreover, the combination of event
pushing with the event filtering creates a more powerful communication infrastructure
for the knowledge network. Figure 2 shows the extension related to the push-based
event delivery combined with the event filtering in each knowledge Web server.

The providers and subscribers of knowledge can specify and store their knowledge
(i.e., events, triggers, and rules) in knowledge profiles. Each knowledge Web server
is extended with a component that can provide a Web-based graphical user interface
to the provider or subscriber of knowledge to edit their knowledge profile. The
knowledge profile is persistently stored. The events, triggers, and rules stored in the
knowledge profile are provided to other run-time components of the knowledge Web
server. Figure 2 shows the knowledge profiles existing on different knowledge Web
servers.

Triggers and rules are executed within the knowledge Web server when an event
linked to it has occurred. Processing the triggers involves checking of complex
relationships among event occurrences and also the scheduling of several rules. Rules
can activate various operations on the Web server. The execution of a rule may again
cause new events to occur, resulting in a chained execution of rules. Figure 2 shows
the processing components for triggers and rules residing within the knowledge Web
servers. Knowledge Web server B will execute rule R3 upon receiving filtered event
E1, and knowledge Web server C will execute rule R4 upon receiving filtered event
E2.

A Knowledge Network Approach for Implementing Active Virtual Marketplaces 121

5. Building and Deploying the Knowledge Network

The knowledge network is constructed through a process involving a series of steps
that need to be followed by the providers and subscribers participating in the
knowledge network. This section explains each of the steps in the order they occur.

Figure 3 shows an example for a single provider and single subscriber participating
in the construction of the knowledge network. This simplified view of the
construction process is used as the example to be explained throughout this section.

Event Registration
Form

- Event Filter
- Parameterized
Rules

Home Page

Data
Applications

Events
Rules

Provider
Knowledge Profile

- Published Events
- Triggers
- Rules

Subscriber
Knowledge Profile

- Subscribed Events
- Triggers
- Rules

KWS KWS

User A (Provider) User B (Subscriber)

Event Filter
Rule

Trigger
Rule

Post Event

(1)

(8)

(7)

(1)

(3)

(4)

(6)

(5)

(9)

(2)

Publish

Publish

Register

Trigger,rule

Figure 3. Steps for constructing the knowledge network.

5.1. Publishing Data, Applications, Events, and Rules

The knowledge publishing is shown as steps (1) and (2) in Figure 3. Currently, a user
(or organization), say A, that has data and applications (i.e., methods that may be
connected to a database in his/her home directory) can publish this data and
application on his/her home page. Using the knowledge network concept, user A can
also publish the events that can be raised from his/her own data and applications and
allow other Web surfers to subscribe to those events. The definitions of the events are
input into the knowledge profile to enable the knowledge Web server to process the
events. All other knowledge elements described in this section are also input into the

122 Minsoo Lee, Stanley Y.W. Su, and Herman Lam

knowledge profile. User A can easily hookup the event to his/her home page
afterwards.

An event filtering mechanism may also be provided by user A. Subscribers will
later on give some value ranges for the filters during the event registration step (to be
explained in Section 5.2), and when the event is being posted, the system checks if the
event attribute values satisfy these given value ranges prior to sending out the event to
the subscriber. The type of filters that can be defined on the event attributes are equal,
range, greater (or less) than, single value selection, multiple value selection. The type
of filter decides how the event filtering form will be displayed to the subscriber. The
equal type means that the subscriber should specify the exact value of the event
attribute, which is of interest to the subscriber. This will be displayed as a single blank
box to the subscriber requesting input. The range type means that the subscriber
should specify the minimum and maximum values for the event attribute which is of
interest to the subscriber. Two blank boxes indicating the maximum and minimum
value will be displayed to the subscriber for the range to be input. The greater (or less)
than type requires the subscriber to provide a lower bound (or upper bound) of the
event attribute. This results in a single blank box being displayed to the subscriber
requesting a lower bound or upper bound value to be input. The single selection type
allows the subscriber to select one of the values that the provider has pre-defined.
This results in a drop-down box, which includes all of the candidate values. The
multiple selection type is similar to the single selection operator except that it allows
the subscriber to select multiple values rather than just a single value, meaning that
the subscriber can receive events that have attribute values falling into any of the
multiple selected values. The multiple selection type is displayed as multiple radio
buttons that can be individually selected and unselected.

Rules that are applied to user A’s data can also be published for use by various
applications that require meta-data (e.g., in e-commerce applications.) Several
parameterized rules that can be triggered by user A’s own events may also be
published. The subscriber of user A’s event can link the event to the parameterized
rules during event registration so that automatic rule processing can be conducted on
the provider site (i.e., user A’s site) with the guarantee that these operations are
authorized and safe for user A’s own Web server.

5.2. Event Registration

Another user, say B, is surfing on the web and discovers the homepage of user A and
finds an event of interest. User B then accesses the event registration form and
registers for an event that user A has published on his/her home page. In a more
advanced automated scenario, users do not need to surf on the Web to find out about
newly added events but can automatically be informed by registering for an event
named “AddedNewEvent” on the Web sites. User B may subscribe to the event to be
sent out either as an e-mail notification or a pushed event to his/her knowledge Web
server. At the time of registration, user B may also provide values that are to be used
later on for filtering out irrelevant events. If some parameterized rules linked to the
subscribed event are supported by the event provider, the user B may select some
rules to be executed on the event provider’s site. An example of such a rule could be
changing user B’s subscription information (i.e., discontinue subscription of an event

A Knowledge Network Approach for Implementing Active Virtual Marketplaces 123

after some specified number of postings) automatically after sending the event. The
event registration steps are shown as steps (3) to (6) in Figure 3. After user B
performs this registration, the event that occurs later on will be filtered and then either
be sent out as an e-mail notification or be posted to the knowledge Web server on
which the user B has his/her own knowledge profile. The knowledge profile should
contain the events that the user B has subscribed to as well as the triggers and rules
that are defined for the event. User B can also define additional triggers and rules that
are to be processed at his/her own knowledge Web server when an event notification
has reached the knowledge Web server. This is further described in the following
subsection.

5.3. Trigger and Rule Specification

After subscribing to an event, user B may then access the Knowledge Profile Manager
- a module which manages the user’s knowledge profile (event subscription, trigger
and rule definition information) - of his/her own knowledge Web server and specify
the additional triggers and rules that should be executed upon the occurrences of the
events he/she has subscribed to. Several events that user B has subscribed to may be
linked to a set of rules, forming composite events and structures of rules. In Figure 3,
these steps are shown as (7) and (8).

5.4. Event Posting, Filtering, and Rule Execution

Service providers will later generate events that first go through a filtering process to
identify the relevant subscribers of the event. Once the subscribers are identified,
rules on the provider’s site can be executed. These rules are remotely executable
rules, which are intended to allow remote users to have a limited capability to execute
units of code on the provider’s site. The event is then posted either as an e-mail
message to the subscriber or an event notification to the subscriber’s knowledge Web
server. If the subscriber has some triggers and rules defined on his/her own
knowledge Web server linked to the event, the event will trigger the execution of
these rules which may perform some operations within the subscriber’s web server
and/or generate another event that can be again posted to another site. This is step (9)
in Figure 3.

6. Active Virtual Marketplace Implementation

The virtual marketplace is currently one of the most rapidly growing application areas
on the Internet. The knowledge network concept can be used to further enhance the
virtual marketplace and business-to-business e-commerce by adding active
capabilities and intelligence to the Internet.

124 Minsoo Lee, Stanley Y.W. Su, and Herman Lam

6.1. The IntelliBiz Company

We demonstrate our concept by implementing an example company named IntelliBiz.
The IntelliBiz company performs the Business-to-Business e-commerce service by
connecting suppliers of products and/or services to buyers who are seeking these
products and/or services. They publish a list of suppliers and buyers on their
company’s home pages categorized by the products and services. A new supplier can
go through a supplier registration process and give information about the types of
product or service the company provides along with the company contact information.
New buyers go through a separate registration process and give information about the
product or service for which they are seeking. IntelliBiz provides the services to allow
businesses to easily find each other and forms a virtual marketplace of products and
services at the business level.

 The IntelliBiz company has several types of events to which the suppliers or
buyers can subscribe. The description of these events and the supported filters are as
follows:
 NewSupplier (String ID, String e-mail, String URL, String product, Range price):

This event is posted when a new supplier registers with the IntelliBiz company.
The information about the supplier is encapsulated in the event parameters. Buyers
can subscribe to this event to obtain the information about the new suppliers.
Filters on this event are supported for the product and price attributes.

 NewBuyer (String ID, String e-mail, String URL, String product, Range price):
This event is posted when a new buyer registers with the IntelliBiz company. The
event parameters encapsulate the buyer information. Suppliers can subscribe to this
event to obtain this important information about newly registered buyers in a
timely manner. Filters on this event are supported for the product and price
attributes.

 RFQ (String ID, String BuyerURL, String product, String quantity, String
delivery_date): This event represents an RFQ (Request For Quote) which is
generated by a buyer who is looking for a specific product and wants to collect
quotes from the suppliers registered with IntelliBiz. This event is originally
generated and posted by a buyer to the IntelliBiz company. The IntelliBiz company
will then post this event to any of the suppliers who have subscribed to this event
through IntelliBiz. Filters on this event are supported for the product attribute.

The IntelliBiz company also has the following parameterized rules (provider-side

rule) that the subscribers of the events can make use of while registering for the
subscription of the event.
 NotifyBuyer(String SupplierID, String SupplierE-mail, String SupplierURL) : This

rule will send an e-mail notification to a new buyer to introduce a new supplier. A
supplier can select this rule to be installed when the supplier subscribes to the
NewBuyer event. The parameter within this rule is the buyer's e-mail address to be
used to send the e-mail notification. This rule is later invoked when a new buyer
comes in and performs the registration task which posts the NewBuyer event.

 NotifySupplier(String BuyerID, String BuyerE-mail, String BuyerURL) : This rule
does exactly the same thing as the NotifyBuyer rule except that the buyer and the
supplier roles are reversed. This rule will send an e-mail notification to a new

A Knowledge Network Approach for Implementing Active Virtual Marketplaces 125

supplier to introduce a buyer. A buyer can select this rule to be installed when the
buyer subscribes to the NewSupplier event. This rule is later invoked when a new
supplier comes in and performs the registration task which posts the NewSupplier
event.

Suppliers
e-CarSpeaker
CarSeats.com
…..

Register NewSupplier

Buyers
MyAutos.com
SportsCars.com
…..

Register NewBuyer

IntelliBiz

Supplier Registration

Buyer Registration

ID
e-mail
URL
Product
Price
Event Subscription

NewBuyer
RFQ

ID
e-mail
URL
Product
Price
Event Subscription

NewSupplier

Filter

Notify

Rules

Rules

Notify

Filter

Home Page
Product ...
Price ...

Product ...
Price ...

Event object
E-mail

NotifyBuyer

Event object
E-mail

NotifySupplier

Figure 4. The IntelliBiz home page and registration forms.

The home page and the registration forms for the buyers and suppliers are shown in
Figure 4. The event registration forms for the NewBuyer event and NewSupplier
event are also shown.

6.2. The Suppliers and Buyers

In our scenario, we assume that there are two suppliers, two buyers and the IntelliBiz
company. All of these companies have their own web sites.

The suppliers are as follows:
 e-CarSpeakers : This Internet company specializes in selling audio speakers for

cars.
 CarSeats.com : This company sells car seats over the Internet.

The buyers are as follows:
 MyAutos.com : This company is a new manufacturer of economic class family

sedans.
 SportsCars.com : This company is a sports car manufacturer.

126 Minsoo Lee, Stanley Y.W. Su, and Herman Lam

The subscribed events and filters along with the triggers and rules that are defined
for each of the suppliers are as follows:

The e-CarSpeakers company subscribes to the two events NewBuyer and RFQ.
The filter installed for the NewBuyer event checks for the product to be speakers and
also restricts the price range to be more than $300. The NotifyBuyer rule is also
selected on the provider side. On the e-CarSpeakers site, the trigger relates the
NewBuyer event to the AlertMarketing rule. The AlertMarketing rule will store the
buyer information into the database and also alert the marketing department about the
new buyer. The RFQ event is not only subscribed on the IntelliBiz site but also from
other potential web sites that can post the event to the e-CarSpeakers company. The
company filters out all but the product being speakers and having a quantity constraint
of more than 20 speakers. The RFQ event is tied to the GenQuote rule on the e-
CarSpeakers web site. The GenQuote rule will generate the quote accordingly and
post the QuoteEvent to whoever generated the RFQ event. The GenQuote rule will
extract the buyer's URL from the RFQ event and use it to post the QuoteEvent back to
the buyer.

Explanations of the CarSeats.com events, triggers, and rules are similar to the e-
CarSpeakers web site except that, for the NewBuyer event, it does not perform any
operation on its web site. Using the knowledge network, the suppliers can effectively
contact those buyers of interest with the events and filtering concepts and further
initiate local operations such as alerting people and invoking applications within their
companies via rules.

Table 1. Subscription information of supplier e-CarSpeakers.

IntelliBiz Site (Publisher) e-CarSpeakers Site (Subscriber)

Subscribed
Event

Event
Filter

Provider
Rule

Trigger
[Event](Rule)

Rule

NewBuyer (Product=
Speaker)
AND
(Price.
morethan
(300))

Notify
Buyer

[NewBuyer]
(AlertMarketing)

AlertMarketing
C: true;
A: Store in DB;
 Alert Marketing
dept.;

RFQ
(also exist
on
other sites)

(Product=
Speaker)
AND
(Quantity>
20)

 [RFQ]
(GenQuote)

GenQuote
C: true
A:GenerateQuote;
 Post

 QuoteEvent;

A Knowledge Network Approach for Implementing Active Virtual Marketplaces 127

Table 2. Subscription information of supplier CarSeats.com.

IntelliBiz Site (Publisher) CarSeats.com Site (Subscriber)

Subscribed
Event

Event
Filter

Provider
Rule

Trigger
[Event](Rule)

Rule

NewBuyer (Product=
Seats)
AND
(Price.
lessthan
(300))

Notify
Buyer

RFQ
(also exist
on
other sites)

(Product=
Seats)
AND
(Quantity>
100)

 [RFQ]
(GenQuote)

GenQuote
C: true
A: Generate Quote;
 Post QuoteEvent;

Table 3. Subscription information of buyer MyAutos.com.

IntelliBiz Site / any Site (Publisher) MyAutos.com Site (Subscriber)

Subscribed
Event

Event
Filter

Provider
Rule

Trigger
[Event](Rule)

Rule

New
Supplier
(IntelliBiz
site)

(Product=
Speaker)
AND
(Price.
lessthan
(500))

Notify
Supplier

[NewSupplier]
(EvalSupplier)

EvalSupplier
C: Credibility =

good;
A: Save in DB;

 Post RFQ to
Supplier;

Quote
Event
(any site)

 [QuoteEvent]
(ProcessQuote)

ProcessQuote
C: [Count>10]
 Quote=best
A: Post

AcceptQuote;

128 Minsoo Lee, Stanley Y.W. Su, and Herman Lam

Table 4. Subscription information of buyer SportsCars.com.

IntelliBiz Site / any Site (Publisher) SportsCars.com Site (Subscriber)

Subscribed
Event

Event
Filter

Provider
Rule

Trigger
[TriggerEvent]
(EventHistory)
<Rule>

Rule

New
Supplier
(IntelliBiz
site)

(Product=
Seats)
AND
(Price.
lessthan
(300))

Notify
Supplier

[QuoteEvent]
(QE1 AND
QE2)
<ProcessQuote>

ProcessQuote
C: true;
A: Compare with
 QE1 and QE2;

Quote
Event
(any site)

[QuoteEvent]
()
<SaveRule>

SaveRule
C: true;
A: Save in DB;

The subscribed events and filters along with the triggers and rules that are defined

for each of the buyers are as follows. The MyAutos.com company subscribes to the
two events NewSupplier and QuoteEvent. The QuoteEvent can come from any
website participating in a quote submission. When the NewSupplier event is posted,
the MyAutos.com has put a filter that checks if the product is a speaker and also if the
price is less than $500. If an event satisfying this filter is posted, the provider side rule
NotifySupplier is invoked and then the event is delivered to the MyAutos.com web
site. The MyAutos.com company is very cautious about posting its RFQs and only
wants to post it individually to the suppliers that have good credit rather than posting
its RFQ through the IntelliBiz web site and receiving many quotes from relatively
small companies. Therefore, the NewSupplier event is linked to the EvalSupplier rule,
which performs a credit check and then proceeds to send out an RFQ individually to
the supplier. The capability of defining rules on each of the local web sites allows
personal information or policies to be kept secure and undisclosed. The QuoteEvent
is an event that is posted in response to the RFQ encapsulating a quote that is
generated by a supplier. The QuoteEvent is linked to the ProcessQuote rule through a
trigger. The ProcessQuote rule will check the number of quotes and see if it is the best
quote received. If it is the best quote, then the quote accepting process is initiated.

The SportsCars.com web site has similar events, triggers and rules except that for
the QuoteEvent it has two triggers. The first trigger also includes an event history
expression - denoted as EH - and checks if two important quotes QE1 and QE2 have
arrived. If they both have arrived, the quote comparison can be done by the
ProcessQuote rule. Otherwise the quote is just saved in the database via the SaveRule.

A Knowledge Network Approach for Implementing Active Virtual Marketplaces 129

6.3. The Big Picture

An overall diagram, which puts all of these knowledge elements together, is shown in
Figure 5. The links in the figure show how the events are posted and the triggers and
rules are executed on each of the supplier and buyer sites. The filters (which were
described in detail in the previous section) are not shown in order to simplify the
diagram. The figure shows how the IntelliBiz web site links the buyers and the
suppliers through the knowledge network.

As shown in the above scenario, the knowledge network provides an ideal
infrastructure for collaboration and for adding knowledge into the web to make it
more intelligent and applicable to the emerging areas of Internet applications such as
virtual marketplaces and e-commerce applications.

IntelliBiz

NewBuyer event
- NotifyBuyer

NewSupplier event
- NotifySupplier

RFQ event

MyAutos.com

SportsCars.com

E-CarSpeakers

CarsSeats.com

EvalSupplier

ProcessQuote

ProcessQuote

SaveRule

GenQuote

AlertMarketing

GenQuote

E-mail notification
Event object notification

RFQ

RFQ

QuoteEvent

QuoteEvent

<Suppliers> <Buyers>

Figure 5. The Business-to-Business e-commerce scenario.

7. Knowledge Network Modules

The Event Server, ETR Server, Knowledge Profile Manager components, which
compose the knowledge Web Server were developed using Java (JDK 1.4). Applet,
servlet and RMI technology were used to implement the components. The popular
Apache Web Server and Tomcat servlet engine were used as the basic existing
infrastructure, which we extended with our newly developed components.

130 Minsoo Lee, Stanley Y.W. Su, and Herman Lam

The core component is the ETR Server, which can process events, triggers and
rules. The following subsections describe the implementation of the ETR Server,
Event Server and Knowledge Profile Manager in detail.

7.1. ETR Server

The ETR Server has many key features that are not supported by other rule systems.
They are:

 The ETR Server is developed in Java and is thus deployable on any platform.
 Processing of complex event relationships and rule sequences is possible. This

includes checking events happening in a certain order, the occurrence of all (or
any) of the events. Rules can be executed in a sequential, synchronized, or parallel
fashion.

 The ETR Server can extract the parameters delivered via the events and distribute
them to the appropriate rules. This eliminates the need for rules to be tightly
coupled with event types.

 The ETR Server has an extensible interface that enables it to receive events from
various communication infrastructures.

 The ETR Server supports dynamic changing of rules. Rules can be modified during
run-time; i.e., rule instances in the previously defined form can be running while
instances of the newly modified rule can be created and executed. This is
implemented with the dynamic class loading capability of Java.

 Rules are grouped and can be activated or deactivated as a group.
 Events posted in synchronous mode or asynchronous mode is supported by the

ETR Server. Synchronous and asynchronous modes of events are supported by
building in a return value for the triggers. When a synchronous event is posted to a
KWS, the relevant trigger is identified and will complete the execution and return a
value to the site that posted the event. Thus the source site of the event will wait
until the trigger execution is completed. The synchronous event has a limitation
that the event can only be related to a single trigger on the KWS due to its waiting
semantics. When an asynchronous event is posted to a KWS, there is no value that
is returned to the source site of the event. Therefore the source site of an
asynchronous event need not wait for the trigger execution to complete. This
allows multiple triggers to be tied to an event and is considered more realistic and
suitable for the Internet.

 The ETR Server can process various built-in rule variable types that are useful for
different applications. There are temporary type, persistent type, and existing type
rule variables. The temporary type is used just like a local variable in a program
and can store a value while the rule is being executed. It can contain a constant
value used within the rule body, or temporarily store return values from method
executions and pass them as parameters to other method calls. The persistent type
has an assigned identifier when it is declared. The identifier is used to initialize the
rule variable from a persistent storage area as well as save it into the shared
persistent storage. When rules need to communicate among each other, the
persistent rule variable can be used to share common values through the persistent

A Knowledge Network Approach for Implementing Active Virtual Marketplaces 131

store. In some cases, the same rule can use the persistent value to execute multiple
times beyond a single rule execution in such cases where counting is needed. The
existing type is used to reference RMI server objects on the system. The
declaration of the reference type requires the server name to be provided. The
existing type can be used within the rule body to invoke methods on the servers
and can tie several servers through the rule body. The existing type enables
external servers and libraries to be linked into the rule language other than standard
Java calls. These three types of rule variables are converted to the appropriate Java
calls when compiling the rules to produce the Java codes.

OrbixInterface

RS

RuleObjectManager

Orbix

RMI

EvTrTable RGCoordinator

TriggerStruct

TriggerHashTable

RuleSchedulerThread

ETRMain

ETRServerInterface

VitriaAPI
Vitria

Interface
configuration

create

interface
RuleThread

CLI

EventHashTable

Figure 6. Architecture of the ETR Server

Figure 6 illustrates the architecture of the ETR Server. The Java class name of the
modules are shown. The classes on the left show the interfaces currently supported for
the communication infrastructure. RMI, Orbix, and Vitria’s Communicator are
currently supported. The RuleObjectManager is the entry point to the core ETR
Server classes. There exist two hash tables: event hash table and the trigger hash
table to store the mappings to/from triggering events and triggers. Each trigger
element in the trigger hash table also contains a complex structure called
TriggerStruct, which contains the event history and rule sequence information. The
event history is processed by the Event History Processor. TriggerStruct data structure
stores information about predecessors and successors of each rule specified in the
trigger. Scalability issues can be solved by the RuleScheduler which uses this data
structure to schedule the multiple rules via threads. The RGCoordinator manages the
rule group information.

In order to minimize the overhead on monitoring and processing events, the
Knowledge network uses a push-based event delivery mechanism. Events will be
actively notified to subscribers rather than subscribers needing to poll the source to
identify events. However when composite events such as chained events (i.e., event 1
is based on event 2 while event 2 is again based on event 3) are defined, the overhead

132 Minsoo Lee, Stanley Y.W. Su, and Herman Lam

on monitoring and processing events becomes nontrivial even in push-based event
delivery systems. A source event will be pushed to another site, which in turn will
identify a trigger and invoke a rule to post another event to another site. Therefore
identifying the relevant triggers for an event needs to be very efficient. The ETR
Server in the Knowledge network incorporates a very efficient special dual hash table
to identify relevant triggers of events and can minimize the overhead. A more severe
overhead is experienced when multiple types of events distributed over the Web are
inter-related in a more complex way than a chained relationship. The trigger can be
used to specify the complex relationships among events. However, this processing
involves historical events to be compared against each other and therefore an event
graph is used to speed up the comparison among historical event occurrences
maintained in an event base. The event graph eliminates the need to scan a large part
of the event base. The trigger is also designed to reduce the monitoring overhead by
splitting the trigger into two parts: the trigger event and event history. The trigger
event is an OR-ed expression of events and can minimize checking of complex
historical conditions by allowing the event history to be evaluated only when an event
specified in the trigger event occurs. In this way, the monitoring and processing of
complex events becomes very efficient in the Knowledge network.

7.2. Event Server

The event is implemented as a Java class in the Event Server. When the event is
delivered over the Internet, depending on the delivery mechanism it may be converted
to an XML format. This is true when HTTP is used for communication.

The Event Server consists of the following 4 key modules :
 A module to receive events : This module is implemented as a servlet or RMI

server to receive events through HTTP or RMI. It then forwards the event to the
ETR server through RMI. The Event server on the system has a configured port
that the RMI server is listening to in order to catch events happening on its local
site. The subscribers’ mechanism to monitor when an event occurs is simplified by
employing a push-based event delivery to the subscribers. Therefore, subscribers
will perform subsequent operations only when an event is pushed to its site. A
servlet and RMI server that are part of the Event Server listen to certain ports on
the Knowledge Web server to receive the pushed event.

 A module to deliver events : This module accepts requests to send events over the
Internet through HTTP or RMI. Once a generated event goes through the event
filtering module and identifies the appropriate subscribers, the delivering module
will post the event to the destination.

 A module to filter events : This module keeps the event subscription information
along with the event filters that have been defined. The event filters are kept in
three kinds of data structures : inverted index, modified 2-3 tree, Range Table.
This information is persistently stored.

 A module to process event registration : This module automatically generates event
subscription forms that are shown to event subscribers during the event registration
time. Events and their filters are stored in XML format and are processed with
XSL to create the HTML forms. This module is implemented as a servlet.

A Knowledge Network Approach for Implementing Active Virtual Marketplaces 133

Scalability of filtering are achieved by the efficient filtering data structures while
the delivery mechanism can be improved by using an event multicasting scheme.

The above four key modules cooperatively form the basis of the communication
infrastructure of the knowledge network.

Provider Menus

Event Editor
Event Filter Editor
Rule Editor
Trigger Editor

Subscribed Event Viewer
Rule Editor
Trigger EditorSubscriber Menus

Subscriber
Event Definition
Event Filter Definition
Rule Definition
Trigger Definition

Provider
Event Definition
Event Filter Definition
Rule Definition
Trigger Definition

Knowledge Profile User

Figure 7. The Knowledge Profile Manager GUI menus and storage

7.3. Knowledge Profile Manager

The Knowledge Profile Manager is implemented as an applet, servlet and RMI server
combination. The front end of the Knowledge Profile Manager is developed as an
applet. The applet enables users to access menus for defining and viewing events,
triggers, and rules. Two different menus such as the Provider menu and the Subscriber
menu are available as shown in Figure 7. The backend is formed as a servlet and talks
to an RMI server that is used to persistently store the knowledge information.

8. Conclusion

In this paper, we have discussed the concept and an implementation of an active
virtual marketplace. The active virtual marketplace can be realized by adapting the
knowledge network infrastructure. The knowledge network extends the existing
Internet-Web infrastructure by adding event and rule services as a part of the
information infrastructure. Events, rules, and triggers, which relate events to the

134 Minsoo Lee, Stanley Y.W. Su, and Herman Lam

evaluation of event history and the activation of rules, can be used to capture human
and enterprise knowledge in the Internet, making the Internet an active knowledge
network instead of a passive data network. The event, event filter, event history, and
rule processing capabilities of the knowledge network offer very powerful and useful
services to enable the timely delivery of relevant data and the activation of operations
that are necessary for the realization of an active virtual marketplace application.

A few future research issues are identified as follows. First, security issues need to
be further investigated due to the executable characteristics of rules on the provider
(i.e., virtual marketplace coordinator) site. Rules can have potentially damaging
effects if the proper authorization and security issues are not clearly specified. This is
especially important when financial hazards could occur for virtual marketplaces.
Second, an event ontology is required to effectively make the infrastructure more
scalable for a global marketplace. The event definitions may be controllable within a
limited size group of nodes. However, when the target platform becomes the whole
Internet, ontology issues need to be resolved. One way to practically solve this
problem would be to provide an ontology server for specific business domains rather
than supporting the entire business domain. Third, dynamic change of events need to
be looked into. Although we support dynamic change of rules in our framework,
events may also need to be modified in a dynamic way. The event parameters can
change when the event semantics are refined and thus the event subscribers would
have to accommodate such changes. This dynamic change of events could make use
of the event notification mechanism by defining an event such as EventChanged event
which carries modified event definitions to the subscribers and rules could take
actions to inform administrators or disable the relevant triggers. Fourth,
interconnecting rules in this way could have a potential to contradict each other or
have infinitely looping effects among the buyers and sellers or coordinators in the
virtual marketplace. Therefore, a validation mechanism for global rule chaining could
be devised by adding distributed deadlock monitors into the infrastructure. Fifth, an
enhancement on scalability is needed. Current scalability features are built into the
rule scheduling and event filtering mechanisms. However, event notifications can also
be very time-consuming. Therefore, rather than using point-to-point delivery as in our
prototype, hierarchical broadcasting or multicasting techniques for event delivery
need to be investigated.

References

1. M. Lee, S.Y.W. Su, and H. Lam. Event and Rule Services for Achieving a Web-based
Knowledge Network. Technical Report, UF CISE TR00-002, University of Florida (2000).

2. Beat F. Schmid and Dorian Selz. Requirements for electronic markets architecture. EM –
Electronic Markets, 7(1), 1997.

3. Lawrence J. Magid, Wednesday, March 22, 2000 Los Angeles Times, March 22, 2000,
http://www.larrysworld.com/articles/sb_b2bvirtual.htm

4. U. Dayal, B.T. Blaustein, A.P. Buchmann, et al. The HiPAC Project: Combining Active
Databases and Timing Constraints. In ACM SIGMOD Record, Vol. 17(1), March (1988)
51-70.

5. J. Widom, (ed.). Active Database Systems: Triggers and Rules for Advanced Database
Processing. Morgan Kaufmann, San Francisco, California (1996).

A Knowledge Network Approach for Implementing Active Virtual Marketplaces 135

6. I. Ben-Shaul and S. Ifergan. WebRule: An Event-based Framework for Active Collaboration
among Web Servers. In Computer Networks and ISDN Systems, Vol. 29(8-13), October
(1997) 1029-1040.

7. BEA, WebLogic Events, http://www4.weblogic.com/docs/techoverview/ em.html
8 A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Achieving Expressiveness and Scalability

in an Internet-Scale Event Notification Service. In Proc. of the 19th ACM Symposium on
Principles of Distributed Computing (PODC2000), Portland, OR, July (2000) 219-227.

9. NEONet, http://www.neonsoft.com/products/NEONet.html
10. S. Brandt and A. Kristensen. Web Push as an Internet Notification Service. W3C Workshop

on Push Technology. http://keryxsoft.hpl.hp.com/doc/ins.html, Boston, MA, September
(1997).

11. Sun Microsystems. Java Message Service API, http://java.sun.com/products/jms/, January
22 (2001).

12. Object Management Group (OMG), CORBA Notification Service, specification version 1.0.
June 20 (2000).

13. Dayal, U., Blaustein, B.T., Buchmann, A.P., Chakravarthy, U.S., Hsu, M., Ledin, R.,
McCarthy, D.R., Rosenthal, A., Sarin, S.K., Carey, M.J., Livny, M., Jauhari, R. The HiPAC
Project: Combining Active Databases and Timing Constraints. ACM Sigmod Record
17(1):51-70, (1988).

14. Gehani, N.H., Jagadish H.V. ODE as an Active Database: Constraints and Triggers. Proc.
of the 17th. VLDB Conference, Barcelona, Catalonia, Spain, 327-336, (1991).

15.G. Banavar, M. Kaplan, K. Shaw, R.E. Strom, D.C. Sturman, and W. Tao. Information
Flow Based Event Distribution Middleware. In Proc. of Electronic Commerce and Web-
based Applications Workshop at the International Conference on Distributed Computing
Systems (ICDCS99), Austin, TX, May 31 - June 4 (1999).

16. M. Franklin, S. Zdonik. A Framework for Scalable Dissemination-Based Systems.
OOPSLA 1997, Proc. ACM SIGPLAN, Atlanta, Georgia, 94-105, October (1997).

Stream Integration Techniques for Grid

Monitoring

Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, UK

Abstract. Grids are distributed systems that provide access to compu-
tational resources in a transparent fashion. Providing information about
the status of the Grid itself is called Grid monitoring. As an approach
to this problem, we present the Relational Grid Monitoring Architecture
(R-GMA), which tackles Grid monitoring as an information integration
problem.
A novel feature of R-GMA is its support for integrating stream data
via a simple “local as view” approach. We describe the infrastructure
that R-GMA provides for publishing and querying monitoring data. In
this context, we discuss the semantics of continuous queries, provide
characterisations of query plans, and present an algorithm for computing
such plans.
The concepts and mechanisms offered by R-GMA are general and can be
applied in other areas where there is a need for publishing and querying
information in a distributed fashion.

1 Introduction

Data integration systems allow a user to access several, heterogeneous data
sources as if they were one virtual database. This is generally achieved by pre-
senting a single global schema at which the user poses queries. A query is “trans-
lated” by a mediator component into one or more queries over the individual
data sources. Each data source is related to the global schema by some prede-
fined mapping. The data collected from the individual sources, in response to
the user’s query, are then combined together to form the answer set.

Data integration has been a popular topic in the literature. The semantics
of query answering has been discussed [19, 17, 34], and several data integration
systems have been described [5, 20]. More recently, researchers have considered
how to support integrity constraints on a global schema [4]. However, all this
body of work has been focused on static data sources such as databases and
web pages. In this paper, we discuss data integration techniques for a set of
distributed data streams.

The concept of a data stream is useful when we are primarily interested in
how a data source changes over time. Data streams appear in many situations,
e.g. stock market prices, sensor data, monitoring information. Recently, there has
been a lot of research focus on data streams and management systems for them

S. Spaccapietra et al. (Eds.): Journal on Data Semantics II, LNCS 3360, pp. 136–175, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Stream Integration Techniques for Grid Monitoring 137

[2]. However, to the best of our knowledge there has been no work previously
conducted on integrating distributed data streams.

A Grid is a collection of distributed computational resources which have been
pooled to present users with a single, virtual supercomputer. In order to be able
to behave as a supercomputer, components of the Grid need to be able to find
out the status of other Grid components. The gathering of status information
falls into the fields of fabric monitoring and network monitoring. The problem
of locating and delivering this status information is known as Grid monitoring.

It is easily seen that a Grid monitoring system requires facilities for publishing
distributed data. However, this data comes in two varieties: (i) static data which
does not change regularly, e.g. the software installed on a particular computing
cluster, and (ii) stream data which changes often in a short period of time, e.g. the
memory load of a particular computing element. A system that supports Grid
monitoring should provide a global view of the data and be able to answer queries
about the current state and the history of streams as well as continuous queries,
which ask for an answer stream. It needs to be scalable to allow thousands of
nodes to publish, and it must be resilient if any node fails. There are also issues
of privacy of data that need to be addressed.

In collaboration with the European Union’s DataGrid project (2001–2004) [9],
we have been involved in the development of the Relational Grid Monitoring
Architecture (R-GMA) as a framework for realising a Grid monitoring system.
A distinguishing feature of R-GMA is that it approaches Grid monitoring as a
data integration task: combining existing techniques for static data integration
with techniques that we have developed for integrating data streams. This allows
users to query a global schema to retrieve the data they are interested in. The
system will seamlessly locate all the data of interest and return it as an answer
to the query.

DataGrid’s aim was to build and deploy middleware for a Grid that will allow
three major user groups to process and analyse the results of their scientific ex-
periments: (i) high energy physicists who want to distribute and analyse the vast
amounts of data that will be produced by the Large Hadron Collider at CERN,
(ii) biologists who need to process medical images as part of the exploitation of
genomes, and (iii) scientists of the European Space Agency’s Earth Observation
project who are analysing images of atmospheric ozone.

During the past two years, we have implemented a working R-GMA system
within DataGrid. Our aim was to develop functionality that had a firm theoret-
ical basis and that was flexible enough to quickly respond to user requirements
as they became clearer. We will describe the status of our implementation at
the end of the DataGrid project. R-GMA has an open-source licence and can
be downloaded from [10].

The main contribution of this paper is a formal framework for developing
techniques to integrate distributed data streams. A characteristic feature of the
framework is that it allows one to set up so-called republishers, which are anal-
ogous to materialised views in that they are defined by queries over the global
schema and make the answers to those queries available for further processing.

138 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

Such republishers can make answering queries over distributed stream data more
efficient. For the case of selection queries over distributed streams, we present
algorithms to compute execution plans that take advantage of views. Based on
our framework, we show that the plans have formal properties like soundness
and completeness. We have addressed these topics in the context of a Grid mon-
itoring system. However, our approach is general and can be used wherever there
is a need to publish and query distributed stream data.

The rest of the paper is structured as follows. In Section 2 we give an overview
of Grid computing, outline the requirements of a Grid monitoring system and
discuss how far existing techniques and systems meet these requirements. Then,
in Section 3, we present an idealised architecture of a data integration system
for both static and stream data in the context of Grid monitoring: this abstracts
from the idiosyncrasies of the actual R-GMA implementation. Republishers
allow queries to be answered more efficiently, but make query planning more
involved. We define the semantics of stream queries in R-GMA in Section 4,
develop characterisations for query plans in the presence of republishers in Sec-
tion 5, and present an algorithm for computing query plans in Section 6. We
discuss the state of the current implementation and the experiences with it in
Section 7. Finally, we present our conclusions in Section 8.

2 Grid Monitoring: Overview and Requirements

We shall now present the idea of Grid computing and describe the components of
a Grid. We explain what is meant by Grid monitoring and identify requirements
for a Grid monitoring system.

2.1 Grids

A Grid is a collection of connected, geographically distributed computing re-
sources belonging to several different organisations. Typically the resources are
a mix of computers, storage devices, network bandwidth and specialised equip-
ment, such as supercomputers or databases. A Grid provides instantaneous ac-
cess to files, remote computers, software and specialist equipment [12]. From a
user’s point of view, a Grid is a single virtual supercomputer.

In the late 90s, the concept of a Grid emerged as a new model for pooling
computational resources across organisations and making them available in a
transparent fashion, using communication networks [12]. Since then, there has
been a growing number of projects to construct Grids for different tasks. They
include the NASA Information Power Grid [18] and TeraGrid [3] in the US, and
CrossGrid [7] and DataGrid [9] in Europe. The Globus group [15] is developing
the Globus Toolkit, a suite of middleware components, which are being widely
used as a platform for building Grids.

To make a Grid behave as a virtual computer, various components are re-
quired that mimic the behaviour of a computer’s operating system. The compo-
nents of DataGrid, and their interactions, can be seen in Fig. 1 and are similar
to those presented in [13]:

Stream Integration Techniques for Grid Monitoring 139

User Interface: allows a human user to submit and track jobs, e.g. “analyse
the data from a physics experiment, and store the result”.

Resource Broker: controls the submission of jobs, finds suitable available re-
sources and allocates them to the job.

Logging and Bookkeeping: tracks the progress of jobs, informs users when
jobs are completed, which resources were used, and how much they will be
charged for the job.

Storage Element (SE): provides access to physical storage devices for storing
data files.

Replica Catalogue: tracks where data is stored and replicates data files as
required.

Computing Element (CE): provides access to a cluster of CPUs, and man-
ages the jobs that run on these.

Monitoring System: monitors the state of the components of the Grid and
makes this data available to other components.

Logging and
Bookkeeping

User
Interface

Replica
Catalogue

Data Transfer
Job Submisssion
Results
Status Information

Resource
Broker

Computer

Computing
Element

Computer

Computer Computer

Storage
Element

Monitoring
System

Fig. 1. The major components of DataGrid.

2.2 Grid Monitoring Requirements

The purpose of a Grid monitoring system is to make information about the
status of a Grid available to users and to other components of the Grid. This is
separated from the task of capturing monitoring information, which is performed
locally at the computing element, storage element or between network nodes. For
example, network monitoring measurements can be made using the PingER tool
[23] to measure the throughput between two network nodes. The results of these
local monitoring tasks are then made available across the Grid by the Grid
monitoring system.

As a basis for discussing the requirements that such a system should meet,
we consider the following use cases:

140 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

1. A resource broker needs to quickly (within 10 seconds) locate a comput-
ing element (CE) that has 5 CPUs available, each with at least 200 MB of
memory. The CE should have the right software installed, and the user must
be authorised to use it. The throughput to an SE needs to be greater than
500 Mbps.

2. A visualisation tool that is used by users to monitor the progress of their
jobs needs to be updated whenever the status of a job changes.

3. Network administrators need to interrogate the past state of the network so
that typical behaviour can be ascertained and anomalies identified.

Publishing Data. There are many different kinds of information about a Grid,
which come from numerous sources. The following are examples:

– Measurements of network throughput, e.g. made by sending a ping message
across the network and publishing the runtime (use cases 1 and 3 above);

– Job progress statistics, either generated by annotated programs or by a re-
source broker (use case 2);

– Details about the topologies of the different networks connected (use cases 1
and 3);

– Details about the applications, licences, etc., available at each resource (use
case 1).

This monitoring data can be classified into two types based on the frequency
with which it changes and depending on the way in which it is queried:

Static data (pools): This is data that does not change regularly or data that
does not change for the duration of a query, e.g. data that is being held in
a database management system with concurrency control. Typical examples
are data about the operating system on a CE, or the total space on an SE
(use case 1).

Dynamic data (streams): This is data that can be thought of as continually
changing, e.g. the memory usage of a CE (use case 1), or data that leads to
new query results as soon as it is available, for example the status of a job
(use case 2).

A core requirement, then, of a Grid monitoring system is that it should allow
both static and streaming data to be published. The act of publishing involves
two tasks: (i) advertising the data that is available, and (ii) answering requests
for that data.

Locating Data. Data about Grid components will be scattered across the Grid,
and the monitoring system must provide mechanisms for users of the Grid to
locate data sources.

In addition, users need a global view over these data sources, in order to
understand relationships between the data and to query it.

Stream Integration Techniques for Grid Monitoring 141

Queries with Different Temporal Characteristics. A monitoring system
should support queries posed over data streams, over data pools, or over a mix
of these (use case 1).

It should be possible to ask about the state of a stream right now (a latest-
state query—use case 1), continuously from now on (a continuous query—use
case 2), or in the past (a history query—use case 3).

Up-to-date answers should be returned quickly, e.g. in use case 1 the resource
broker requires that the data is no more than a few seconds old. To be accepted
by users, the query language should capture most of the common use cases, but
should not force a user to learn too many new concepts.

Scalability, Robustness, and Performance. A Grid is potentially very large:
DataGrid’s testbed contains hundreds of resources each producing monitoring
information. In the normal use of a Grid, the fabric will be unreliable: network
connections will fail and resources will become inaccessible.

It is important that the monitoring system can scale. It needs to be able to
handle a large number of sources, publishing potentially large amounts of data.
Likewise there will be a large number of users of monitoring information, both
humans and grid components, who require correct answers in a timely manner.
The monitoring system should not become a performance bottleneck for the
entire Grid. It should be able to cope with large numbers of queries received at
the same time.

The monitoring system itself should be resilient to failure of any of its compo-
nents, otherwise the whole Grid could fail along with it. The monitoring system
cannot have any sort of central control as resources will be contributed by or-
ganisations that are independent of each other.

Security. An information source must be able to control who can “see” its data
and this must also be respected by the monitoring system. Users should be able
to identify themselves so that they can make use of the resources that they are
entitled to. Resources should be able to prevent access by users who are not
authorised.

2.3 Possible Approaches for a Grid Monitoring System

We now discuss the fields of data stream management systems and semantic
matchmaking for which several systems and prototypes exist. Here we will ex-
amine whether these could be suitable for Grid monitoring.

Data Stream Processing. Data streams show up in many different situations
where dynamically changing data can be collected, e.g. stock market prices, sen-
sor data, monitoring information. Recently, the idea of a centralised data stream
management system (DSMS) has been developed, and some preliminary sys-
tems have been implemented, such as STREAM [2], Aurora [6], Tribeca [31],

142 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

Telegraph [28] and AIMS [29]. They support querying and management of re-
lations, akin to a relational database management system, only these relations
may be either streaming or static.

These existing DSMS do not meet all the requirements of a Grid monitoring
system (Section 2.2). The centralised systems developed today would not cope
dynamically with the creation and removal of geographically distributed streams
nor coordinate the communication of data from sources to clients. This central
point would become a single point of failure as all information sources and clients
of the systems would need to interact with it.

Some work is now being carried out to distribute the query processing of a
DSMS over a cluster of machines. One such distributed DSMS is the D-CAPE
system [32]. However, this is still tightly coupled and essentially a centralised
DSMS.

Another interesting contribution to the processing of data streams is the
dQUOB project [26]. In dQUOB, precompiled trigger queries, called “quoblets”,
are inserted into the distributed data streams. These quoblets then filter the
stream at, or near, the source and perform some processing on the data con-
tained. However, as the queries must be precompiled they cannot easily handle
the ad hoc one-off queries found in Grid monitoring. There is also no support
for querying the latest-state or the history of a stream as required of a Grid
monitoring system.

Semantic Matchmaking. In the area of web services, and multi agent sys-
tems, there is a need to match service requests with service descriptions. These
service descriptions, and likewise requests, include information about the pro-
cessing performed by the service, the parameters taken as inputs and the results
provided as output. However, since web services cover a wide area of domains,
e.g. train tickets, air travel, etc, it is not possible, or even desirable, to agree on
one standardised vocabulary. As such, ontologies are used to relate terms from
differing domains which leads to approximate matches being found for service
requests. These techniques have been deployed in systems [21, 25].

The problem domain of Grid monitoring differs from that of matching service
descriptions. In Grid monitoring we are dealing with one fixed domain, so it
is possible to fix a single, standardised vocabulary. Thus we do not need to
reason about how closely related terms are in an ontology and can retrieve exact
semantic matches for requests of monitoring data.

2.4 Existing Grid Monitoring Systems

Several Grid monitoring systems have been developed to this date: AutoPi-
lot [27], CODE [30], and the Monitoring and Discovery Service (MDS) [8], to
name some of them. MDS, being part of the Globus Toolkit [15], is the most
widely known among these systems.

Monitoring and Discovery Service (MDS). The main components of MDS
are information providers, which publish monitoring data at Grid locations, and

Stream Integration Techniques for Grid Monitoring 143

aggregate directories, which collect them and make them available for querying.
Aggregate directories can be organised in hierarchies, with intermediaries that
forward their data to other directories at higher levels.

Also, data is organised hierarchically in a structure that provides a name
space, a data model, wire protocols and querying capabilities. MDS exists cur-
rently in its third incarnation. Previous versions were based on the LDAP data
model and query language. The latest version is based on XML and supports
the XPath query language.

Although the hierarchical architecture makes it scalable, MDS does not meet
other requirements outlined in Section 2.2. Firstly, hierarchical query languages
have limitations. For one, the hierarchy must be designed with popular queries
in mind. Moreover, there is no support for users who want to relate data from
different sections of the hierarchy—they must process these queries themselves.

Secondly, to be able to offer a global view of the Grid to users, a hierarchy
of aggregate directories must be set up manually—information providers and
intermediary directories need to know which directory further up the hierarchy
to register with. The system does not automate this, nor does it recover if any
component in the hierarchy fails.

Lastly, MDS only supports latest-state queries with no assurance that the
answers are up-to-date. It is claimed that users can create archives of historical
information by (i) storing the various latest-state values that have been published
via MDS in a database and by (ii) providing an interface to allow the system
to access the database. However, this approach would require considerable effort
on the side of the user.

3 The R-GMA Approach

The R-GMA approach differs from those discussed before by the fact that it
perceives Grid monitoring as a data integration problem. The Grid community
has proposed the Grid Monitoring Architecture as a general architecture for
a Grid monitoring system. However, this architecture does not specify a data
model, nor does it say how queries are to be answered. We have extended this
architecture by choosing the relational data model, and by applying ideas that
originated in the area of data integration. In this section we present an idealised
architecture. While this is guiding the implementation work, the actual R-GMA
system as deployed in DataGrid differs from it in several ways. Details of the
current implementation of R-GMA can be found in Section 7.

3.1 The Grid Monitoring Architecture

The Grid Monitoring Architecture (GMA) was proposed by Tierney et al. [33]
and has been recommended by the Global Grid Forum [14] for its scalability. It
is a simple architecture comprising three main types of actors:

Producers: Sources of data on the Grid, e.g. a sensor, or a description of a
network topology.

144 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

Consumer

Directory

Service

Events

Producer

Fig. 2. The components of the GMA and their interactions

Consumers: Users of data available on the Grid, e.g. a resource broker, or a
system administrator wanting to find out about the utilisation of a Grid
resource.

Directory Service: A special purpose component that stores details of pro-
ducers and consumers to allow consumers to locate relevant producers of
data.

The interaction of these actors is schematically depicted in Fig. 2. A producer
informs the directory service of the kind of data it has to offer. A consumer
contacts the directory service to discover which producers have data relevant
to its query. A communication link is then set up directly with each producer
to acquire data. Consumers may also register with the directory service. This
allows new producers to notify any consumers that have relevant queries.

Intermediary components may be set up that consist of both a consumer and
a producer. Intermediaries may be used to forward, broadcast, filter, aggregate
or archive data from other producers. The intermediary then makes this data
available to other consumers from a single point in the Grid.

By separating the tasks of information discovery, enquiry, and publication,
the GMA is scalable. However, it does not define a data model, query language,
or a protocol for data transmission. Nor does it say what information should be
stored in the directory service. There are no details of how the directory service
should perform the task of matching producers with consumers.

3.2 R-GMA as a Virtual Database

R-GMA builds upon the GMA proposal by choosing the relational data model.
Components playing the part of a consumer need to be able to locate and retrieve
data of interest (Section 2.2). R-GMA achieves this by presenting a “virtual
database” into which all monitoring data appears to flow. As in a real database,
the data in the virtual database conforms to a relational schema. It is this global
schema that allows consumers to locate data of interest.

Consumers describe the monitoring data that they are interested in by posing
queries against the global schema. The data is provided by a number of producers

Stream Integration Techniques for Grid Monitoring 145

who each have a local schema. R-GMA uses the idea of a mediator [35] to match
a consumer’s request for data with the advertisements of data registered by
producers.

In order for R-GMA to be able to present the illusion of a virtual database,
extra components are needed. These components, along with their interactions,
are shown in Fig. 3. In the rest of this section, we shall introduce each component,
and explain the rationale behind its design: consumers, producers, consumer and
producer agents, schema, republishers and registry.

Consumer
Register Query
& View (Q=V)

Producer

Republisher

Consumer

Producer

Producer

Registry Schema

Register Query

Register View

Fig. 3. Components of R-GMA

3.3 Roles and Agents

R-GMA takes up the consumer and producer metaphors of the GMA and refines
them. An R-GMA installation allows clients, which may be Grid components
or applications running on the Grid, to play the role of an information producer
or a consumer.

Producers. In order that both data pools and streams can be published, two
producer roles should be supported: a database producer and a stream producer.
A database producer publishes a collection of relations maintained in a rela-
tional database. A stream producer publishes a collection of streams, each of
which complies with the schema of a specific relation. We refer to these static
or streamed relations as the local relations of a producer.

A producer advertises its local relations by describing them as simple views
on the global schema. In the current implementation of R-GMA, the views can
only be selections.

Consumers. A consumer is defined by a relational query. If the query is posed
over stream relations, then the consumer has to declare whether it is to be

146 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

Consumer
API

Application

Consumer
Agent

Registry

Producer
Agent

Producer
API

Sensor

Data

Meta data

Fig. 4. Roles and agents of R-GMA.

interpreted as a continuous, a history or a latest-state query (see Section 2.2).
Once the execution of a continuous query has started, the consumer receives the
answer as a stream of tuples.

Agents. R-GMA provides agents that help clients to play their roles. The
interactions of producers and consumers with their agents is illustrated in Fig 4.
To play a role, an application uses an API, which in turn communicates with
a remote agent. All of the functionality required to play the role is provided by
the agent. Agents are realised using Java servlet technology, and are hosted in
web servers. Details are discussed in Section 7.

3.4 The Schema

To interact with each other, producers and consumers need a common language
and vocabulary, in which producers can describe the information they supply and
consumers the information for which they have a demand. In R-GMA, both the
language for announcing supply and the one for specifying demand—that is,
the query language—are essentially fragments of SQL. The vocabulary consists
of relations and attributes that make up a global schema, which is stored in
R-GMA’s schema component.

Ideally the global schema distinguishes between two kinds of relations, static
and stream relations. The two sets are disjoint. The global schema contains a core
of relations that exist during the entire lifetime of an installation. In addition,
producers can introduce new relations to describe their data, and withdraw them
again if they stop publishing.

The attributes of a relation have types as in SQL. In addition to its declared
attributes, every stream relation has an additional attribute timestamp, which is
of a type DateTime and records the the time a tuple was published.

For both kinds of relations, a subset of the attributes can be singled out as
the primary key. Primary keys are interpreted as usual: if two tuples agree on

Stream Integration Techniques for Grid Monitoring 147

the key attributes and the timestamp, they must also agree on the remaining
attributes. However, since data are published by independent producers, the
constraint cannot be enforced.

For stream relations, the keys play an additional semantic role. The key
attributes specify the parameters of a reading, i.e. they identify “where” and
“how” a reading was taken. The rest of the attributes, except the timestamp,
are the measurement attributes, i.e. the attributes that state “what” the current
reading is.

For instance, R-GMA’s schema contains the core relation ntp for publishing
readings of the throughput of network links. The relation has the schema

ntp(from, to, tool, psize, latency, timestamp),

which records the time it took (according to some particular tool) to transport
packets of a specific size from one node to another. All attributes except latency
make up the primary key of ntp.

Intuitively, a specific set of values for the key attributes of a stream relation
identify a channel along which measurements are communicated. For example,
for the ntp relation with the tuple

(’hw’, ’ral’, ’ping’, 256, 93, 2004-03-17 14:12:35),

measuring a latency of 93 ms for a 256 byte ping message between Heriot-Watt
University and Rutherford Appleton Laboratories on Wednesday 17 March 2004
at 2:12 pm, the channel is identified by the values

(’hw’, ’ral’, ’ping’, 256).

Consumers pose queries over the global schema. For example, suppose we
are interested to know how long it will take to copy the file myData, containing
experimental data, from the storage elements where it is stored to the cluster
workerNode where it is to be processed. Suppose also the global schema contains
the ntp relation defined above and a static file allocation table

fat(site, file),

which tracks which files are stored at which sites.
Using these relations we can gather the required information with the SQL-

like query

SELECT LATEST N.from, N.psize, N.latency
FROM ntp as N, fat as F
WHERE N.from = F.site and

F.file = ’myData’ and
N.to = ’workerNode’ and
N.tool = ’ping’,

148 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

which asks for the sites where the file is stored and the most up-to-date infor-
mation about the network throughput, based on the ping tool, from those sites
to the cluster that will perform the processing. The query uses the keyword
“LATEST”, which in R-GMA indicates that this is a latest-state query (see Sec-
tion 3.5 for more details on temporal query types). This information can then
be used to calculate which will be the fastest site to transfer the file from.

Similarly, producers are able to describe their local relations as views on the
global schema. In Halevy’s terminology [17], this means that R-GMA takes a
“local as view” approach to data integration.

3.5 Producers and Consumers: Semantics

At present, R-GMA requires that producers declare their content using views
without projections. Thus, each producer contributes a set of tuples to each global
relation. This allows us to give an intuitive semantics to an R-GMA installation:
a static relation is interpreted as the union of the contributions published by the
database producers; a stream relation is interpreted as a global stream obtained
by merging the streams of all the stream producers.

A static query is interpreted over the collection of all static relations, while a
continuous query is conceptually posed over the virtual global stream. An history
query refers to all tuples that have ever been published in the stream. Finally, a
latest-state query posed at time t0 refers to the set of tuples obtained by choosing
from each active channel the last tuple published before or at time t0.

Actually, the semantics of stream relations is not as well-defined as it may
seem because it does not specify an order for the tuples in the global stream.
We do not guarantee a specific order on the entire global stream. However, we
require that global streams are weakly ordered, that is, for a given channel the
order of tuples in the global stream is consistent with the timestamps. This
property ensures that aggregation queries on streams that group tuples accord-
ing to channels have a well-defined semantics. As we shall see later on, it also
facilitates switching between query plans. We explain in Sections 5 and 6 how
one can enforce this constraint.

We are aware that our semantics of stream relations causes difficulties for
some kinds of queries, for instance, aggregate queries over sliding windows where
the set of grouping attributes is a strict subset of the keys. In such a case, different
orderings of a stream can give rise to different query answers. We have not yet
dealt with this issue.

Among the three temporal interpretations of stream queries, only continuous
queries are supported by default by a stream producer agent. However, when a
stream producer is created, the agent can be instructed to maintain a pool with
the history and/or the latest-state of the stream. This would enable it to answer
queries of the respective type. The creation of these pools is optional because
their maintenance will impact on the performance of the stream producer agent.

Stream Integration Techniques for Grid Monitoring 149

3.6 Republishers

Republishers in R-GMA resemble materialised views in a database system. A re-
publisher is defined by one or more queries over the global schema and publishes
the answers to those queries. The queries either have to be all continuous or
all one-time queries. Republishers correspond also to the intermediaries in the
GMA. Their main usage is to reduce the cost of certain query types, like con-
tinuous queries over streams, or to set up an infrastructure that enables queries
of that type in the first place, like latest-state or history queries.

A republisher combines the characteristics of a consumer and a producer.
Due to the redundancy of information created by republishers, there are often
several possibilities to answer a query. Section 6 describes how this is taken into
account in the construction of query execution plans for simple stream queries.

In principle, two types of republisher are conceivable, corresponding to the
distinction between static and stream relations. However, the current implemen-
tation of R-GMA supports only stream republishers.

Stream Republishers. Stream republishers pose a continuous query and out-
put the answer stream. All stream republishers can answer continuous queries.
In addition, similar to a stream producer agent, a stream republisher agent can
be configured to maintain also a pool of latest-state values or a history so that
it can answer also latest-state and history queries.

Since both input and output are streams, one can build hierarchies of stream
republishers over several levels. An important usage for such hierarchies is to
bundle small flows of data into larger ones and thus reduce communication cost.

Stream producers often publish data obtained from sensors, such as the
throughput of a network link measured with a specific tool. While such pri-
mary flows of data, to elaborate on the metaphor, tend to be trickles, with
stream republishers they can be combined into streams proper. For instance,
stream republishers may be used to first collect data about the network traffic
from one site and then, at the next level up, between the sites belonging to an
entire organisation participating in a Grid. Thus a consumer asking for network
throughput on all links from a particular site need only contact the republisher
for that site or for the organisation instead of all the individual stream producers.

Database Republishers. A database republisher will pose a one-time query
at a set of published databases and make the answer available as a materialised
view. This is useful for pre-computing union and join queries where the source
relations are distributed across the Grid.

Applications of R-GMA in DataGrid have shown a clear need for this func-
tionality. It has been met so far by periodically publishing static relations as
streams and by using a stream republisher with latest-state pool to collect the
union of those relations. This approach is bound to become unfeasible as the size
of applications increases. Instead, view maintenance techniques will be needed
to propagate only changes of the underlying data instead of the full data sets.

150 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

3.7 The Registry

We refer to producers and republishers together as publishers. Consumer agents
need to find publishers that can contribute to answering their query. This is
facilitated by R-GMA’s registry, which records all publishers and consumers
that exist at any given point in time. Publishers and consumers send a heartbeat
to the registry at predefined intervals to maintain their registration.

When a new publisher is created, its agent contacts the registry to inform
it about the type of that publisher and, if it is a stream publisher, whether
it maintains latest-state or history pools. If the publisher is a producer, the
agent registers its local relations together with the views on the global schema
that describe their content. If it is a republisher, the agent registers its queries.
Similarly, when a consumer is created, the consumer’s agent contacts the registry
with the consumer’s query.

The registry cooperates with the consumer agent in constructing a query
plan. It identifies publishers that can contribute to the answers of that query,
called the relevant publishers. In the current implementation, the registry in-
forms the agent of all relevant publishers. Due to the existence of republishers,
there may be some redundancy among the relevant publishers. In the future,
the registry may exploit this to reduce the amount of information sent to the
agent. It could do so by informing the agent only of the publishers that contribute
maximally to the query, called maximal relevant publishers, while ignoring those
that are subsumed by a maximal one. Based on the list of publishers it has re-
ceived, the agent constructs a query plan. (In Section 6 we discuss how to choose
maximal relevant publishers and how to create plans for the case of continuous
selection queries over streams.)

When a consumer registers a continuous query, R-GMA ensures that during
the entire lifetime of the consumer it can receive all the data the query asks
for. At present, whenever a new producer registers, the registry identifies the
consumers to which this producer is relevant and notifies their agents. Then the
agent integrates the new producer into its query plan. A refined approach would
consist in informing a consumer only about a new producer if the producer is not
subsumed by a relevant republisher (see Section 6 for further details). Consumer
agents need to be informed as well when a republisher goes offline because then
the consumer may miss data that it has received via that republisher. Similarly,
the registry has to contact a consumer agent if a new relevant republisher is
created and when a producer goes offline.

4 A Formal Model of Stream Queries in R-GMA

Most often, applications seeking information require the latest-state or the his-
tory of several stream relations to be joined and aggregated. As an example,
consider the query presented in Section 3.4 where the consumer is interested
in calculating how long it will take to transfer their experimental data from a
storage element where it is stored, to the cluster which will process it. Such a
query can be processed if we exploit republishers for the relations ntp and fat

Stream Integration Techniques for Grid Monitoring 151

based at each site. Suppose there are n sites site1, . . . , siten. Each of these site
republishers would pose a query of the form

SELECT *
FROM ntp
WHERE from = sitei,

which can be represented in relational algebra as σfrom=sitei(ntp). Similarly, for
the relation fat the republisher would hold the view σsite=sitei(fat). Then the
query of Section 3.4 can be processed by posing it locally to each site republisher
and taking the union of the answers. This is due to the fact that the query only
joins ntp and fat tuples that agree on the site attribute.

The query could equally be answered by a republisher that had the full fat
relation available and that collected together all of the ping measurements of
the ntp relation, i.e. a republisher that poses the query

σtool=’ping’(ntp).

A consumer agent could discover automatically that queries like the one in the
example can be answered locally. If a query is monotonic, the answers generated
by merging the local answers are always correct. For such a query, the agent
would only have to make sure that no answers are lost if this approach is taken.
In fact, this can be detected by satisfiability checks involving the join conditions
of the query and the selection conditions of the views held by the republishers.

Queries can be answered efficiently if a hierarchy of stream republishers has
been set up to collect the data needed. As shown in the example above, by
using the pools maintained by the republishers, complex latest-state and history
queries can also be answered.

For the monitoring applications we have encountered so far it is sufficient if
consumers and republishers pose simple continuous queries that are selections
over a single relation. Although this is a very restricted form of query, its se-
mantics in a data integration scenario like R-GMA’s is not straightforward.

In this and the subsequent sections we introduce a formalism to define the
meaning of simple stream queries that are posed against a global schema, while
data are provided by stream producers and republishers. Since data can only be
obtained from publishers, a global query has to be translated into a plan, that
is, a query over the local stream relations of the publishers. Part of the difficulty
of the problem stems from the fact that a republisher offers a stream of data,
but at the same time has to run a plan to acquire its data.

Fig. 5 shows a consumer, producers, and a hierarchy of republishers for the
throughput relation ntp. For each component, the query or descriptive view,
respectively, is indicated by a condition involving the attributes of ntp. The
bold lines leading to each republisher indicate how data can flow through the
hierarchy, while the dashed lines leading to the consumer represent publishers
that are relevant to the consumer query. We will refer to the situation depicted
in the figure to illustrate the query plans that our techniques will generate.

152 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

from = ’hw’

Producer

Republisher

Consumer

Data Flow

Potential answer stream

R2:

psize >= 128
tool = ’ping’ /\from = ’hw’

R1:

from = ’hw’ /\
tool = ’UDPmon’

S1:

from = ’ral’
R3:

R4:

from = ’hw’ /\
tool = ’ping’

S2:
from = ’ral’ /\
tool = ’ping’

S3:
from = ’ral’ /\
tool = ’UDPmon’

S4:
from = ’ral’ /\
tool = ’Iperf’

S5:

?

?

?

?

Fig. 5. A hierarchy of stream republishers for ntp.

In the present section we define a formal framework for publishing and query-
ing distributed streams with the help of a global schema. This will be used in
Section 5 to develop characterisations of query plans. In Section 6 we discuss
how to compute query plans for consumers and republishers.

4.1 Streams and Their Properties

We formalise data streams as finite or infinite sequences of tuples. To capture
the idea that a stream consists of readings, each of which is taken at a specific
point in time, we assume that one attribute of each stream tuple is a timestamp.

More precisely, suppose that T is the set of all tuples. Then a stream s is a
partial function from the natural numbers N to T ,

s : N ↪→ T,

such that, if s(n) defined for some n ∈ N, the tuple s(m) is defined for all m < n.
Thus, s(n) denotes the nth tuple of s. We write s(n) = ⊥ if the nth tuple of s
is undefined. A special case is the empty stream, also denoted as ⊥, which is
undefined for every n ∈ N.

We have chosen to model data streams in this way as it allows different tuples
to have the same timestamp and tuples to arrive in an order independent of their
timestamp. Thus, we have no requirements about how regularly a reading can
be taken nor do we require that readings are published in chronological order.

Suppose r is a relation with a relation schema, specifying a type for each
attribute. We define as usual when a tuple satisfies the schema. A stream satisfies
the schema if all its tuples satisfy it. We assume from now on that a relation
schema is declared for every stream and that the stream satisfies its local schema.

Stream Integration Techniques for Grid Monitoring 153

Properties of Data Streams. As in Section 3, we assume that the attributes
of a stream relation are split into three parts: key attributes, measurement at-
tributes and the timestamp.

We specify the following shorthands for the subtuples of s(n) relating to these
three parts:

sκ(n) for the values of the key attributes;
sμ(n) for the values of the measurement attributes;
sτ (n) for the timestamp of s(n).

We use this notation to formalise the channels of a stream. We say that a
stream s1 is a substream of s2 if s1 can be obtained from s2 by deleting zero
or more tuples from s2. A channel of s is a maximal substream whose tuples
agree on the key attributes of s. For every tuple t occurring in s, where tκ is the
subtuple of t that contains the values of the key attributes, the substream of s
consisting of the tuples with sκ(n) = tκ is the channel of tκ.

The following properties of streams are central to our discussion of the se-
mantics of stream queries.

Duplicate Freeness: A stream s is duplicate free if for all m, n with m �= n
we have that s(m) �= s(n), that is, if no tuple occurs twice in s.

Weak Order: A stream s is weakly ordered if for all m, n with sκ(m) = sκ(n)
and m < n we have that sτ (m) < sτ (n). This means that in every channel
of s, tuples appear in the order of their timestamps. Note that this definition
is equivalent to requiring that for all m, n with sκ(m) = sκ(n) and sτ (m) <
sτ (n) we have that m < n.

Channel Disjointness: Two streams s1 and s2 are channel disjoint if for all
m, n we have that sκ

1 (m) �= sκ
2 (n), that is, if s1 and s2 have no channels in

common.

Operations on Streams. We define two simple operations on streams. Let s be
a stream and suppose that C is a condition involving attributes of the schema
of s, constants, operators “=”, “≤”, “≥”, and boolean connectives. Then the
selection σC(s) of s is the stream that consists of the tuples in s that satisfy C
where those tuples appear in the same order as they do in s.

Let s1, . . . , sn be streams for relations with compatible schemas. A stream s
is a union of s1, . . . , sn if s can be obtained by merging these streams, i.e. , if
each si contributes all its tuples to s, and the tuples of si occur in s in the same
order as they do in si.

Note that the result of a selection is unique, while this is not the case for a
union. Note also that (i) streams resulting from these operations are weakly or-
dered if the argument streams are, and that (ii) the result of a union is duplicate
free it the argument streams are mutually disjoint.

154 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

4.2 Stream Producers

A stream producer is a component that is capable of producing a data stream.
Every stream producer has a local relation schema. We denote both, stream
producers and their local relations, with the letter S.

Local Queries over Stream Producers. We want to pose queries over stream
producers. We call such queries local queries as opposed to global queries, which
are posed over a global schema.

The queries we consider are unions of selections of the form

Q = σC1(S1) � . . . � σCm(Sm), (1)

where S1, . . . , Sm are distinct stream producers whose schemas are mutually
compatible. A special case is the empty union, written ε.

To define the semantics of such a query, we have to associate a stream to
each producer. A stream assignment over a set of producers is a mapping I that
associates to each producer S a stream SI that is compatible with the schema
of S. A stream s is an answer for Q w.r.t. I if s is a union of the selections
σC1(SI

1), . . . , σCm(SI
m). We remind the reader that an answer is not uniquely

defined, since there is more than one way to merge the selections σCi(SI
i). The

empty union ε has only one answer, namely the empty stream ⊥.

Producer Configurations. We want to formalise collections of stream produc-
ers as they can be created in R-GMA. We assume there is a global schema G,
which is a collection of stream relations. A producer configuration consists of a fi-
nite set S of stream producers and a mapping v that associates to each producer
S ∈ S a query vS over the global schema G such that vS is compatible with the
schema of S. If no confusion arises we will also denote the producer configuration
with the letter S. In R-GMA, producer configurations are represented in the
schema and the registry.

We call vS the descriptive view of the producer S. In this paper we limit
ourselves to descriptive views that are selections, that is, they have the form
σD(r) where D is a condition and r is a global relation.

To keep things simple we require, if S is described by the view σD(r), that S
and r have the same attributes and the same type and key constraints. We also
require that the condition D in σD(r) involves only key attributes of r. Thus, the
view restricts the channels of a producer, but not the possible measurements of
the readings.

Instances of Producer Configurations. A producer configuration is similar
to a database schema. It contains declarations and constraints, but no data. We
want to define which streams are the possible instances of such a configuration.

We say that a stream s is sound w.r.t. a query σD(r) over the global schema
if the schema of s is compatible with the schema of r and if every tuple s(n)
satisfies the view condition D.

Stream Integration Techniques for Grid Monitoring 155

An assignment I for the producers in a configuration S is an instance of S
if for every S ∈ S the stream SI is (i) sound w.r.t. the descriptive view v(S),
(ii) duplicate free and (iii) weakly ordered and if, moreover, (iv) distinct pro-
ducers have channel disjoint streams.

4.3 Global Queries and Query Plans

Consumer components in R-GMA pose queries over the global schema and
receive a stream of answers. The only queries over the global schema that we
consider in this section are selections of the form

q = σC(r),

where r is a global relation.1 Since the relation r does not refer to an existing
stream it is not straightforward what the answer to such a query should be.

Intuitively, we understand that query q is posed against a virtual stream,
made up of all the small streams contributed by the producers. We say that
a producer S produces for the relation r if S is described by a view over r. If
I is a producer instance then an answer for q w.r.t. I is a duplicate free and
weakly ordered stream that consists of those tuples satisfying C that occur in
streams SI of producers S which produce for r. Note that, according to our
definition, there can be infinitely many different answer streams for a query q.
Any two answer streams consist of the same tuples, but differ regarding the order
in which they appear.

Note also that we have not postulated that tuples occur in the same order as
in the original producer streams. We only require that the tuples of a channel
appear in the same order as in the stream of the publishing stream producer. This
makes it possible for streams to be split and then re-merged during processing.

Since global queries cannot be answered directly, they need to be translated
into local queries. We say that a local query Q is a plan for a global query q if
for every producer instance I we have that all answer streams for Q w.r.t. I are
also answer streams for q w.r.t. I.

The following proposition gives a characterisation of plans that use only
stream producers.

Proposition 1 (Plans Using Producers). Let Q = σC1(S1)� . . .�σCm(Sm)
be a local query where each Si is described by a view σDi(r) and let q = σC(r)
be a global query. Then Q is a plan for q if and only if the following holds:

1. for each i ∈ 1..m we have that

Ci ∧Di |= C and C ∧Di |= Ci; (2)

2. every stream producer S with a descriptive view σD(r) such that C ∧ D is
satisfiable occurs as some Si.

1 It would be straightforward to generalise our work to unions and projections, al-
though it would complicate the presentation.

156 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

Proof. The first condition ensures that any producer occurring in Q contributes
only tuples satisfying the query and that it contributes all such tuples that it
can possibly produce. The second condition ensures that any producer that can
possibly contribute occurs in the plan.

Since by assumption all Si are distinct and the streams of distinct producers
are channel disjoint, all answers of Q are duplicate free. Also, by the definition
of union of streams, all answers are weakly ordered. ��

The proposition can be immediately translated into an algorithm to com-
pute plans. For instance, in the scenario of Fig. 5, it would yield the plan
Q = σtrue(S1) � σtrue(S2). We discuss in Section 6 how to compute plans in
the presence of republishers.

5 Query Plans Using Republishers

We introduce republishers and generalise query plans accordingly. Then we de-
velop characteristic criteria that allow one to check whether a local query over
arbitrary publishers is a plan for a glolal query.

5.1 Republishers and Queries over Republishers

A republisher R is a component that is defined by a global query qR = σD(r). For
a given instance I of a producer configuration the republisher outputs a stream
that is an answer to qR w.r.t. I. The descriptive view v(R) of a republisher
is identical to the defining query qR. A republisher configuration R is a set of
republishers.

Publisher Configurations. Since both producers and republishers publish
streams, we refer to them collectively as publishers. Ultimately, we want to an-
swer global queries using arbitrary publishers.

We define a publisher configuration as a pair P = (S,R) consisting of a pro-
ducer and a republisher configuration. By abuse of notation, we shall identify P
with the set S ∪R.

A stream assignment J for publishers in P is an instance of P if (i) the
restriction J|S of J to S is an instance of S and if (ii) for every republisher R
the stream RJ is an answer for the global query qR w.r.t. J|S . Thus, an instance
J is “essentially” determined by J|S . Note that RJ being an answer for a global
query implies that RJ is duplicate free and weakly ordered.

Local Queries over Publishers. In the presence of republishers we generalise
our local queries, which had the form (1), in such a way as to allow them to be
posed over arbitrary publishers. Thus, general local queries have the form

Q = σC1(P1) � . . . � σCm(Pm), (3)

where P1, . . . , Pm are distinct publishers.

Stream Integration Techniques for Grid Monitoring 157

A stream s is an answer for Q w.r.t. J if s is a union of the selections
σC1(P

J
1), . . . , σCm(PJ

m).
Similarly as before, we say that a local query Q as in Equation (3) is a plan

for a global query q if for all instances J , every answer for Q is an answer for q.

We are interested in characterising when a local query over a publisher configu-
ration is a plan for a global query. Republishers add to the difficulty of this task
because they introduce redundancy. As a consequence, answers to such a query
need not be duplicate free or weakly ordered.

5.2 Properties of Plans

We first identify the characteristic properties of plans. They are defined in terms
of the properties of the answers to a query.

Consider a fixed publisher configuration P and let Q be a query over P as
in Equation (3). We say that Q is duplicate free if for all instances J of P all
answer streams for Q w.r.t. J are duplicate free. In a similar way, we define
when Q is weakly ordered. Let q be a global query. We say that Q is sound for
q if for all instances J of P all answer streams for Q w.r.t. J are sound for q.
A stream s is complete for q w.r.t. a producer instance I if every tuple in an
answer stream for q w.r.t. I occurs also in s. We say that Q is complete for q
if for all instances J all answer streams for Q w.r.t. J are complete for q w.r.t.
J|S .

Clearly Q is a plan for q if and only if Q is (i) sound for q, (ii) complete for q,
(iii) duplicate free, and (iv) weakly ordered. For soundness and completeness one
would expect characterisations similar to those in Propostion 1. However, with
republishers there is the difficulty that the descriptive views do not accurately
describe which data a republisher offers in a given configuration. For instance, a
republisher may always publish the empty stream if the configuration does not
contain any producers whose views are compatible with the republisher’s query.

Given a publisher configuration P , we derive for every republisher R, defined
by the query σD(r), a new condition D′ as follows. Let S1, . . . , Sn be all producers
for r in P , where v(Si) = σEi(r). Then we define

D′ = D ∧
(n∨
i=1

Ei

)
.

Intuitively, D′ describes which of the tuples that can actually be produced in
P will be republished by R. We call v′(R) := σD′(r) the relativisation of v(R)
w.r.t. P . For a producer S we define the relativisation v′(S) to be equal to v(S).
Note that an empty disjunction is equivalent to false and therefore the relativised
condition for a republisher that does not have producers is false.

5.3 Soundness

First, we give a characterisation of soundness.

158 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

Theorem 1. Let P be a publisher configuration, q = σC(r) a global query, and

Q = σC1(P1) � · · · � σCm(Pm) (4)

be local query over P. Suppose that the descriptive view of Pi is v(Pi) = σDi(r)
and that the relativisation is v′(Pi) = σD′

i
(r). Then Q is sound for q if and only

if for each i ∈ 1..m we have that

Ci ∧D′
i |= C. (5)

Proof. Clearly, if Equation (5) holds, then every tuple in an answer to σCi(r)
over P satisfies C, and so does every tuple in an answer to Q over P .

Conversely, if Equation (5) does not hold, then there is a tuple t that satisfies
some Ci and D′

i, but not C. Since the argument is simpler if Pi is a producer,
we assume without loss of generality that Pi is a republisher.

Since t satisfies D′
i, there is a producer S with v(S) = σE(r) such that t

satisfies Di and E. Let J be an instance where the stream SJ contains t. Then
the stream PJ

i contains t as well, because PJ
i is an answer for σDi (r). Then t is

in every answer stream for σCi(Pi) and therefore in every answer stream for Q
w.r.t. J . However, t does not occur in any answer stream for Q because t does
not satisfy C. ��

It is easy to see that the criterion of the theorem above can be weakened to
a sufficient one if instead of Equation (5) we require that for each i ∈ 1..m we
have

Ci ∧Di |= C, (6)

where Di is the original condition in the descriptive view of Pi.

5.4 Completeness

To characterise completeness, we distinguish between the producers and the
republishers in a local query. The reason is that the stream of a republisher is
always complete for its descriptive view while this need not be the case for a
producer.

Let Q be a query as in Equation (4) and suppose that R1, . . . , Rk are the
republishers and S1, . . . , Sl the stream producers among P1, . . . , Pm. Then we
can write the query as Q = QR �QS where

QR = σC1(R1) � · · · � σCk
(Rk) (7)

QS = σC′
1
(S1) � · · · � σC′

l
(Sl). (8)

Suppose that the republishers have the descriptive views v(Ri) = σDi(r).
We define a condition CR

Q , which summarises the conditions in the selections
of the republisher part QR of Q, as follows:

CR
Q =

k∨
j=1

(Cj ∧Dj). (9)

Stream Integration Techniques for Grid Monitoring 159

Theorem 2. Let P be a publisher configuration, q = σC(r) a global query, and
Q = QR �QS a local query where QR and QS are as in Equations (7) and (8).
Then Q is complete for q if and only if for every stream producer S ∈ P, where
S is described by the view σE(r), one of the two following statements hold:

1. S = Si for some producer Si in QS and

C ∧ E |= CR
Q ∨ C′

i; (10)

2. S does not occur in QS and

C ∧ E |= CR
Q . (11)

Proof. We only give a sketch. A full proof is not difficult but tedious.
To see that the criterion is sufficient note that any tuple in an answer for q

must satisfy C and must originate from some producer for r with view condition
E. Let S be such a producer. A tuple returned by Q can occur either as an
element of an answer for QR or as an element of an answer for QS. If S is
present in Q, then Equation (10) guarantees that a tuple produced by S is
either returned by QR or by QS. If S is not present in Q, then Equation (11)
guarantees that a tuple produced by S is returned by QR.

To see that the criterion is necessary, assume that there is producer S for
which none of the two statements holds. Suppose that S occurs in QS. Then
there is a tuple t such that t satisfies C ∧ E, but satisfies neither CR

Q nor C′
i.

There exists an instance J of P such that t occurs in the stream SJ . Every
answer for q w.r.t. J contains t. However, t does not occur in any answer for Q
w.r.t. J . With a similar argument one can show that t does not occur in any
answer for Q if S does not occur in QS. In summary, this proves that Q is not
complete for q. ��

5.5 Duplicate Freeness

Next, we give a characterisation of duplicate freeness.

Theorem 3. Suppose P is a publisher configuration and Q a local union query
over publishers P1, . . . , Pm as in Equation (3). Suppose that the relativised de-
scriptive view of each Pi is v′(Pi) = σD′

i
(r). Then Q is duplicate free if and only

if the condition
(Ci ∧D′

i) ∧ (Cj ∧D′
j) (12)

is unsatisfiable for each republisher Pi and publisher Pj where i �= j.

Proof. If the statement is true, then for any instance J , the streams σCi(P
J
i)

are mutually disjoint and every answer of Q is duplicate free because the streams
σCi(P

J
i) are duplicate free.

If the statement is not true, then there are i and j with i �= j and a tuple t
such that t satisfies both Ci ∧D′

i and Cj ∧D′
j . Suppose that Pi is a republisher

160 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

and Pj is a producer. Consider an instance J where t occurs in the stream PJ
j of

the producer Pj . Since Pi is a republisher, t occurs also in the stream PJ
j . Finally,

since t satisfies both Ci and Cj , the tuple occurs in both streams, σCi(P
J
i) and

σCj (P
J
j). Hence, there is an answer to Q where the tuple t occurs twice.

If both Pi and Pj are republishers, one can show that there is a producer S
with view σE(r) such that Di ∧Dj ∧ E is satisfiable. Then one chooses a satis-
fying tuple t and considers an instance J where SJ contains t. The rest of the
argument is analogous to the first case. ��

Similar to Theorem 1, we can turn the criterion of the above theorem into a
sufficient one if we replace in Equation (12) the relativised conditions D′

i by the
view conditions Di, that is, if we require that

(Ci ∧Di) ∧ (Cj ∧Dj) (13)

is unsatisfiable for each republisher Pi and publisher Pj where i �= j.

5.6 Weak Order

The following lemma gives a semantic characterisation of weakly ordered queries.

Lemma 1. Let P be a publisher configuration and Q = σC1(P1)�· · ·�σCm(Pm)
be a local query. Then Q is weakly ordered if and only if for all publishers Pi, Pj

with i �= j occurring in Q and for every instance J of P the following holds:
If t and t′ are tuples occurring in the two streams σCi(P

J
i) and σCj (P

J
j),

respectively, then t and t′ disagree on their key attributes.

The lemma holds because otherwise the two streams in question could be
merged in such a way that t and t′ occur in an order that disagrees with their
timestamps. The lemma excludes, for instance, the possibility to use two re-
publishers R>10 and R≤10 with views σlatency>10(ntp) and σlatency≤10(ntp), re-
spectively, for answering the query σtrue(ntp). The reason is that, latency being
a measurement attribute, some tuples of a given channel could end up being
republished by R>10 and others by R≤10.

Since in the end, we are interested in characterising plans for global queries,
we ask next when a local query is weakly ordered and complete for some global
query q. Considering these two properties together has the advantage that it
leads to a characterisation in terms of the individual disjuncts that make up a
union query.

Lemma 2. Let P be a publisher configuration and Q = σC1(P1)�· · ·�σCm(Pm)
be a local query. Suppose that Q is complete for the global query σC(r). Then Q
is weakly ordered if and only if for every publisher Pi occurring in Q and every
instance J of P the following holds:

If the stream σCi(P
J
i) contains some tuple t that satisfies C, then this stream

contains every tuple t′ that is generated by a producer for r such that t′ satisfies C
and t′ agrees with t on the key attributes.

Stream Integration Techniques for Grid Monitoring 161

This lemma follows immediately from the preceding one: if it is impossible
for two publishers to publish tuples from the same channel, then all tuples of
one channel must come from the same publisher.

Lemma 2 can be formalised in logic. We write the condition C of query q as
C(x, y), where x stands for the vector of key attributes of r, which identifies a
channel, and y for the non-key attributes. Similarly, we write the conditions Ci

in query Q and D′
i in the relativised descriptive views as Ci(x, y) and D′

i(x, y)
and we abbreviate the conjunction Ci(x, y) ∧D′

i(x, y) as Fi(x, y).

Theorem 4. Let P be a publisher configuration, Q a local query over P, where
QR = σC1(R1)� · · · �σCk

(Rk), and q = σC(r) a global query. Suppose that Q is
complete for q w.r.t. P. Then Q is weakly ordered if and only if for all i ∈ 1..k
we have

∃y. (C(x, y) ∧ Fi(x, y)) |= ∀y. (C(x, y) → Fi(x, y)). (14)

Proof. Suppose that Equation (14) holds for all i ∈ 1..k. Consider an instance J
of P . We want to show the claim using Lemma 2.

Suppose that t = (tx, ty) is a tuple in the stream σCi(R
J
i) obtained from

a republisher Ri. Then tx satisfies ∃y. (C(x, y) ∧ Fi(x, y)). By Equation (14), it
follows that tx also satisfies ∀y. (C(x, y) → Fi(x, y)). Let t′ = (tx, t′y) be a tuple
that is generated by a producer for r and agrees with t on the key attributes.
Suppose that t′ satisfies C. Then, since tx satisfies ∀y. (C(x, y) → Fi(x, y)), it
follows that t′ also satisfies Fi. Hence, t′ occurs also in the stream σCi(R

J
i).

Since producer streams do not share channels, Lemma 2 yields the sufficiency
of the criterion.

We now show the necessity. Suppose that Equation (14) does not hold for
some i ∈ 1..k. Then there is a tuple t = (tx, ty) that satisfies C ∧ Fi and a tuple
t′ = (tx, t′y) such that t′ satisfies C, but not Fi. By definition of Fi, the tuple t
satisfies Ci, Di, and some condition E for a stream producer S with descriptive
view σE(r). We construct an instance J where both t and t′ occur in the stream
of S. Then t occurs in every answer to σDi (r), the defining query of Ri, and thus
in RJ

i . Moreover, t occurs in the stream σCi(R
J
i). However, since t′ does not

satisfy Fi, it does not occur in that stream. Hence, by Lemma 2 it follows that
Q is not weakly ordered. ��

We note that the proof above would go through as well if we changed Equa-
tion (14) into

∃y. (C(x, y) ∧ Ci(x, y) ∧D′
i(x, y)) |= ∀y. (C(x, y) → Ci(x, y) ∧Di(x, y)),

that is, if we replace D′
i by Di on the right hand side of the entailment. This

formulation, however, is less concise.
Let us review that part of the proof above that shows the sufficiency of the

fact that Equation (14) holds for all i ∈ 1..k for the claim of Theorem 4. It turns
out that it goes through as well if we define

Fi(x, y) = Ci(x, y) ∧Di(x, y), (15)

162 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

that is, if we replace relativised by original view conditions. Thus, Equation (15)
leads to a simpler albeit sufficient criterion for weak order.

The entailment in Equation (14) of Theorem 4 is in general difficult to check
because of the universal quantifier. However, it can be simplified if in queries
and in descriptive views the conditions on key and on non-key attributes are
decoupled, that is, if every condition C(x, y) can be written equivalently as
Cκ(x)∧Cμ(y) (and analogously Ci and Di, and therefore also Fi). This restric-
tion is likely not to cause difficulties in practice.

Theorem 5. Suppose C(x, y) ≡ Cκ(x) ∧ Cμ(y) and Fi(x, y) ≡ Fκ
i (x) ∧ Fμ

i (y).
Then

∃y. (C(x, y) ∧ Fi(x, y)) |= ∀y. (C(x, y) → Fi(x, y))

holds if and only if one of the following holds:

1. Cκ(x) ∧ Fκ
i (x) is unsatisfiable;

2. Cμ(y) ∧ Fμ
i (y) is unsatisfiable;

3. Cμ(y) |= Fμ
i (y).

We omit the proof of the theorem, since it is elementary, but tedious. Again,
we obtain a sufficient criterion if in the definition of the Fi we replace the rela-
tivised view conditions by the original ones.

The theorems in this subsection contain characterisations that allow us to verify
whether a local query is a plan for a global query. As we have seen, the charac-
terisations can be simplified to yield sufficient criteria for soundness, duplicate
freeness and weak order.

In the next section we discuss how the characterisations can be used to
compute query plans over a publisher configuration. Specifically, these techniques
can be used to realise hierarchies of republishers where republishers consume
from other republishers.

6 Computing Query Plans

Based on the characterisations in the previous section, there is a straightforward
approach to constructing a plan Q for a global query q = σC(r). If S1, . . . , Sn

is a sequence comprising all stream producers in a configuration P that publish
for relation r, then by Proposition 1 the query

σC(S1) � · · · � σC(Sn) (16)

is a plan for q. This plan, however, may access a higher number of publishers
than necessary because it does not make use of republishers. The question arises
when a publisher is potentially useful for a query.

General Assumption. We assume from now on that in global queries and
descriptive views the conditions on key and non-key attributes are decoupled,
that is, every condition C can be equivalently rewritten as Cκ ∧ Cμ, where Cκ

involves only key attributes and Cμ involves only non-key attributes.

Stream Integration Techniques for Grid Monitoring 163

6.1 Relevant Publishers

We want to find out which publishers can potentially contribute to a query plan.
We say that a publisher P is strongly relevant for a query q w.r.t. to a

configuration P if there is a plan Q for q that contains a disjunct σC′(P) such
that for some instance J of P the stream σC′(PJ) is non-empty.

Proposition 2 (Strong Relevance). Let P be a publisher configuration and
P a publisher with view σD(r), where D = Dκ ∧Dμ, and where D′ is the rel-
ativised view condition. Let q = σC(r) be a global query where C = Cκ ∧ Cμ.
Then P is strongly relevant for q w.r.t. P if and only if

1. C ∧D′ is satisfiable, and
2. Cμ |= Dμ.

Proof. If P is strongly relevant, then Statement 1 holds because P contributes
some tuple to q and Statement 2 holds by Theorem 4 because the plan containing
P is complete and weakly ordered.

Conversely, suppose the two statements hold. If P is a producer we construct
an instance where P produces a tuple satisfying C. Then P can be part of a
plan as in Equation (16). Because of Statement 1 there is an instance where P
contributes at least one tuple to the answer of the plan.

If P is a republisher, we consider the query Q = σC(P) � σC′(S1) � · · · �
σC′(Sn), where S1, . . . , Sn are all producers for r in P and C′ = C∧¬D. Then it
is easy to check that Q is duplicate free and sound and complete for q. Moreover,
because of Statement 2, Q is weakly ordered. Finally, Statement 1 allows us to
construct an instance of P where P actually contributes to Q. ��

Criterion 1 of Proposition 2 involves relativised views. In practice, this is hard
to check because there may be a large number of producers in a configuration
and producers may come and go. We therefore generalise the criterion in such
a way that it depends solely on the publisher and the query. We say that a
publisher P with view σD(r), where D = Dκ ∧Dμ, is relevant for a query σC(r)
with C = Cκ ∧ Cμ if it has the following two properties:

1. C ∧D is satisfiable (Consistency);
2. Cμ |= Dμ (Measurement Entailment).

Intuitively, the first property states that P can potentially contribute values for
some channels requested by q, while the second states that for those channels
all measurements requested by q are offered by P .

Clearly, strong relevance implies relevance. Also, a relevant republisher may
become strongly relevant if the right producers are added to the current config-
uration.

Consider the scenario in Fig. 5. Let q = σfrom=’hw’(ntp) be the query of the
consumer. Then S1, S2, R1, R2 and R4 are the relevant publishers for q. They
are also strongly relevant.

164 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

6.2 Subsumption of Publishers

In principle, there is a wide range of possibilities to construct query plans in
the presence of republishers. We want to give preference to republishers over
producers, since one of the main reasons for setting up republishers is to support
more efficient query answering. Among the republishers, we want to prefer those
that can contribute as many channels as possible to a query. In order to be able
to rank publishers we introduce a subsumption relationship.

We say that a stream s1 is subsumed by a stream s2 if for every channel c1

in s1 there is a channel c2 in s2 such that c2 is a substream of c1. A publisher
P is subsumed by a republisher R w.r.t. a configuration P , if for every instance
J of P the stream PJ is subsumed by RJ . Since P is usually clear from the
context, we denote this simply as P � R. We say that P is strictly subsumed
by R and write P ≺ R if P is subsumed by R but not vice versa.

The definition entails that if P has the view σDκ∧Dμ(r) and R the view
σEκ∧Eμ(r), then P is subsumed by R if and only if

Dκ |= Eκ and Eμ |= Dμ. (17)

Consider a query q = σC(r), where C = Cκ ∧Cμ. We want to rank relevant
publishers for q also according to the channels they can contribute to q. If P is
a relevant publisher for q and R a relevant republisher, then we say that P is
subsumed by R w.r.t. q, and write P �q R, if for every instance J of P the
stream σC(PJ) is subsumed by σC(RJ). We write P ≺q R to express that P is
strictly subsumed by R w.r.t. q.

If the descriptive view of P is σDκ∧Dμ(r) and the one of R is σEκ∧Eμ(r),
then P �q R if and only if

Dκ ∧ Cκ |= Eκ. (18)

The property Cμ ∧ Eμ |= Cμ ∧Dμ is always satisfied, since the relevance of R
and P implies that Cμ |= Eμ and Cμ |= Dμ.

In the scenario of Fig. 5, among the relevant publishers for q we have the
subsumption relationships S1 ≺q R1, S2 ≺q R1, R2 ≺q R1, R1 �q R4, and
R4 �q R1.

6.3 Plans Using Maximal Relevant Republishers

We present a method for constructing query plans that consist of publishers that
are maximal with regard to the subsumption relation “�q”. We suppose that
the publisher configuration and the query q = σC(r) are fixed.

A relevant publisher is maximal if it is not strictly subsumed by another
relevant publisher. Let Mq be the set of maximal relevant publishers for q. We
partition Mq into the subsets MS

q and MR
q , consisting of stream producers and

republishers, respectively.
We write P1 ∼q P2 if P1 �q P2 and P2 �q P1. Note that a producer is never

equivalent to another publisher because it cannot subsume the other publisher.
Thus, the relation “∼q” is an equivalence relation on the set of republishers MR

q

Stream Integration Techniques for Grid Monitoring 165

and we say that R1 is equivalent to R2 w.r.t. q if R1 ∼q R2. We denote the
equivalence class of a republisher R w.r.t. q as [R]q. Clearly, if P1 and P2 are
two distinct maximal relevant publishers, and P1 �q P2, then P1 ∼q P2.

We call
MR

q =
{

[R]q
∣∣∣ R ∈ MR

q

}

the meta query plan for q. The setMR
q consists of equivalence classes of maximal

relevant republishers. A sequence 〈R1, . . . , Rk〉 of republishers that is obtained
by choosing one representative from each class of republishers in MR

q is called
a supplier sequence for q.

Let 〈R1, . . . , Rk〉 be a supplier sequence for q and S1, . . . , Sl be the stream
producers in MS

q . Suppose the descriptive views of the Ri have the conditions Di.
We define the canonical republisher query for the sequence as

QR = σC1(R1) � · · · � σCk
(Rk), (19)

where C1 = C and Ci = C ∧¬(D1 ∨ · · · ∨Di−1) for i ∈ 2..k. Moreover, we define
the canonical stream producer query as

QS = σC′
1
(S1) � · · · � σC′

l
(Sl), (20)

where C′
j = C ∧ ¬(D1 ∨ . . . ∨Dk) for j ∈ 1..l.

The selection conditions on the disjuncts in QR ensure that Ri only con-
tributes channels that no Ri′ with i′ < i can deliver, and the ones in QS that
producers only contribute channels that cannot be delivered by the republishers.

Note that the conditions Ci depend on the order of republishers in the se-
quence, but once the order is fixed, they do not depend on which republisher
is chosen from an equivalence class. This is due to the fact that for relevant
republishers R and R′ with descriptive conditions D and D′, respectively, we
have that R ∼q R′ if and only if C ∧D is equivalent to C ∧D′, that is, if and
only if C ∧¬D is equivalent to C ∧¬D′. Similarly, for all supplier sequences the
conditions C′

j are the same up to equivalence.

Theorem 6. Let q be a global query a QR and QS be the canonical republisher
query and stream producer query for some supplier sequence for q. Then

Q = QR �QS (21)

is a plan for q.

Proof. We only sketch the proof. To prove that Q is a plan, we have to show
that Q is sound and complete for q, duplicate free and weakly ordered.

The conditions in the selections of Q satisfy Equation (6) and thus ensure
soundness. They also satisfy Equation (13) and thus ensure duplicate freeness.
Completeness is guaranteed because Q satisfies the properties stated in Theo-
rem 2 because maximal republishers are chosen for Q, together with producers
that are not subsumed by a republisher. Finally, Q is weakly ordered because
the republishers used in Q are relevant and thus satisfy the Measurement En-
tailment Property. ��

166 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

Continuing the discussion of the example in Fig. 5, we see that R1 and R4 are
the maximal relevant publishers for the consumer query. Since both republishers
are equivalent w.r.t. q, the local queries σfrom=’hw’(R1) and σfrom=’hw’(R4) are
both plans for q.

As another example, let us consider the query q′ = σtrue(ntp), by which the
top level republisher is defined. For this query, all publishers are relevant (except
R4, for which we do the planning). Moreover, subsumption and subsumption
w.r.t. q′ coincide. There are three maximal publishers, R1, R2, R3, none of which
is equivalent to another publisher. Thus 〈R1, R2, R3〉 is a supplier sequence, and
the corresponding plan is

σtrue(R1) � σfrom 	=’hw’(R2) � σfrom 	=’hw’∧(tool 	=’ping’∨psize<128)(R3).

Computing plans that use maximal republishers involves satisfiability and
entailment checks. Clearly, this makes the task intractable in the worst case if
we admit arbitrary conditions. However, if conditions in queries and views are
of the restricted form that R-GMA supports currently, namely conjunctions

attr1 op1 val1 ∧ . . . ∧ attrn opn valn,

where opi ∈ {<, ≤, =, ≥, > }, then both satisfiability and entailment checks
are polynomial. They remain polynomial if one allows for slightly more gen-
eral conditions by admitting also comparisons between attributes of the form
“attr1 op attr2” or limited disjunctions of the form “attr in { val1, . . . , valn }”.

We foresee that the technique presented above will be the basis for planning
consumer queries in R-GMA. For planning republisher queries, however, some
modifications are needed to ensure that plans do not introduce cyclic dependen-
cies between republishers. To avoid checking for possible cycles whenever a new
republisher query is planned, it seems more feasible not to consider all republish-
ers relevant to the query, but only those that are strictly subsumed with respect
to the general subsumption relationship.

In an implementation, the responsibility for planning can be divided between
registry and consumer agents. A possible way to do this is for the registry to
hand the list of maximal publishers over to the consumer agent, which then
decides which republisher in each class to contact. Such an approach could also
reduce the communication between registry and consumer agent because an
agent would only need to be notified of new producers that are not subsumed
by the republishers in the meta query plan.

6.4 Irredundant Plans

A natural question to ask about the planning technique presented in the previous
section is how good the plans it produces are. A way to approach this question is
to ask whether or not the plans contain redundancies. To simplify the discussion,
we focus only on redundancies among republishers.

Stream Integration Techniques for Grid Monitoring 167

We say that a local query Q covers a global query q = σC(r) w.r.t. a publisher
configuration if Q is complete for q and for every relevant republisher P for q
we have

C ∧D |= CR
Q , (22)

where D is the condition in the descriptive view of R and CR
Q is defined as

in Equation (9). While completeness requires a query to “cover” all relevant
producers, a covering query has to “cover” also all relevant republishers. Plans
based on maximal republishers as introduced in the preceding subsection are
always covering by construction.

Given q, a covering query Q using republishers R1, . . . , Rk is irredundant if
there is no covering query Q′ that uses only a strict subset of R1, . . . , Rk.

We say that a condition is simple if it is a conjunction of comparisons of the
form “attr op val”, where op is one of ≤, <, =, >, or ≥. A global query is simple
if its condition is simple. A configuration is simple if all its descriptive views are
simple. A local query is simple if all its disjuncts have simple conditions.

Proposition 3 (Irredundancy is NP-hard). Checking whether a covering
query is irredundant is NP-hard. This is still the case if we consider only local
queries, global queries, and configurations that are simple.

Proof. We prove the claim by a reduction of the irredundancy problem for
propositional clauses. A set of clauses Γ is said to be irredundant if there is
no clause γ ∈ Γ such that Γ |= γ. Irredundancy of clause sets is known to be
NP-complete [22].

Suppose Γ is a clause set and p1, . . . , pn are the propositional atoms occurring
in Γ . Let r be a relation with key attributes a1, . . . , an, ranging over the rational
numbers. We define conditions Gi as ai > 0 and Ḡi as ai ≤ 0. For every clause
γ ∈ Γ we define Dγ as the conjunction of all Gi such that ¬pi ∈ γ and all Ḡi

such that pi ∈ γ.
For each γ, let Rγ be a republisher defined by the query σDγ (r) and let P

be the configuration consisting of all republishers Rγ . Let q = σtrue(r) and let Q
be the union of all σtrue(Rγ) where γ ∈ Γ . Then Q is clearly covering q w.r.t. P .
Moreover Q is irredundant if and only if for all γ ∈ Γ we have that

Dγ �|=
∨

γ′∈Γ\{ γ }
Dγ′ ,

which holds if and only if
∧

γ′∈Γ\{ γ } ¬Dγ′ �|= ¬Dγ . Now, it is easy see that
this is the case if and only if

∧
γ′∈Γ\{ γ } γ′ �|= γ for all γ ∈ Γ , that is, if Γ is

irredundant. ��
We note without proof that there are situations where all plans based on

maximal relevant republishers are irreducible. Let us a call a set of operators one-
sided if it is a two-element subset of {<,≤, = } or {>,≥, = }. If all conditions
in queries and views are simple and built up from a one-sided set of operators
ranging over the rational numbers, then plans of the form (21) are irreducible.
The reason is that if D, E, and E′ are such conditions, then we have that
D |= E ∨E′ holds if and only if D |= E or D |= E′ holds.

168 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

6.5 Open Problems

We have set up a framework to model distributed streams that are queried via
a global schema. A feature of the approach are so-called stream republishers,
a view-like mechanism that allows one to create new streams that are defined
by a continuous query. We have restricted the form of queries to enable us to
concentrate on semantic issues, such as the meaning of a query or characteristic
properties of query plans. The restrictions are reflecting the current requirements
of the R-GMA Grid monitoring system, to the development of which we are
contributing.

Even in this restricted framework there are a number of open issues that
we have not addressed in the current paper. The most important one is how
to switch from one plan to another. In its simplest form it involves replacing a
republisher by an equivalent one, for instance, when a republisher experiences a
failure. A slightly more difficult task is to replace a republisher by the producers
that feed into it or vice versa. In doing so it is crucial that no tuples are lost and
no duplicates are introduced into the answer stream.

To achieve this a consumer agent has to know where to stop consuming from
old input streams and where to start consuming from new ones. We envisage
protocols that make the switch on a channel by channel basis and exploit the
fact that channels are weakly ordered: For each publisher in a plan, the consumer
agent remembers the timestamp of the last tuple from each channel that it has
received. Then it can switch that channel to a new supplier as soon as it receives
from it a tuple that the old one has already delivered. Tricky situations may
arise if a component fails during such a transition period.

In our discussion we have assumed that the publisher configuration is fixed.
In reality, however, it changes continuously, as publishers come and go. This
requires plan modification techniques that subject existing plans to changes that
are as small as possible.

7 R-GMA Implementation

We have been collaborating with the European Union’s DataGrid project to
implement the architecture and techniques presented in this paper. By the end of
the DataGrid project, a working R-GMA system had been deployed on a testbed
containing 25 sites and was attracting a growing user base. In this section, we
describe this implementation and indicate some of the ways the system is being
used.

The system continues to be developed in a follow-on project Enabling Grids
for E-Science in Europe (EGEE) [11]. One of the aims of EGEE is to prepare
Grid middleware components developed in DataGrid, including R-GMA, for use
in a much larger Grid being set up to support physicists working with the Large
Hadron Collider (LHC) at CERN.

Stream Integration Techniques for Grid Monitoring 169

7.1 Overall Approach

The Grid components that play the role of producer or consumer in R-GMA
are applications that are coded in several programming languages. To support
these R-GMA offers APIs in C, C++, Java, Perl and Python. As it would not
make sense to duplicate all of the core functionality of R-GMA in each of these
languages, these APIs communicate with agents. The agents are realised using
servlet technology and are hosted by web servers.

Through the approach of APIs and agents we hope to impose as small a load
on the Grid components as possible. This is because the agent is responsible for
all R-GMA specific functionality, e.g. answering queries posed by consumers.
The load imposed on the Grid component is that of making the measurement,
which is the responsibility of the fabric or network monitor, and passing the
measurement to the agent.

We have seen in Section 2 that the system should be resilient to failures
in the network. R-GMA achieves this by using a simple heartbeat registration
protocol. Heartbeats are sent from API to agent and from agent to registry. If
a problem occurs and heartbeats fail to arrive within some time interval, the
receiver can assume that the sender is no longer around. The use of heartbeats
does consume some network bandwidth from the Grid but this is kept low by (i)
using suitable time intervals for the heartbeats and (ii) not requiring a heartbeat
to be sent if a tuple has been sent instead.

Another requirement, that the system should not have a single point of fail-
ure, was not met by the end of DataGrid. Work was started on protocols for
replicating the registry and schema. However, this had not been finalised by the
end of the DataGrid project and is continuing in the EGEE project.

7.2 Use of R-GMA Components in DataGrid

In DataGrid, R-GMA was mainly used for publishing network monitoring data
and for providing information on resources for resource brokers. In addition, it
was tested for monitoring batch jobs.

Schema. R-GMA ships with a set of core relations that describe the com-
ponents of a Grid and how they are related to each other. These relations are
derived from a conceptual model called GLUE [16], which was defined by a num-
ber of Grid projects, including DataGrid. Users may also introduce new relations
into the global schema.

To keep the system simple, R-GMA currently only supports publication
of stream relations. Nevertheless, care was taken when designing the schema
to separate data that changes rapidly (such as the number of free CPUs of a
computing element) from more static data (e.g. lists specifying access rights of
users).

170 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

Producers. As the schema only supports stream relations, R-GMA currently
offers just a stream producer API for publishing data. All stream producers
can answer continuous queries. In addition, the user can configure the agent to
maintain the history or the latest state of the stream in a database.

In DataGrid, one use of stream producers was to periodically publish informa-
tion about Grid resources for resource brokers. Dynamically changing relations
were published every 30 seconds, whereas static relations were resent every hour.
Fortunately, the volume of static information was moderate, as the testbed was
small, and so this approach worked. However, as EGEE’s testbed grows in size,
mechanisms may be needed that forward only changes to “static” data sets.

Consumers. The consumer API allows users to pose continuous, latest-state
and history queries in SQL. In principle, arbitrary one-time queries can be posed.
However, these can only be answered if a republisher for all the tables in the
query can be located. Select-project queries, on the other hand, can always be
answered by contacting all of the relevant producers.

Resource brokers have complex latest-state queries. In DataGrid’s testbed,
each resource broker was provided with a dedicated republisher. A consumer
agent acting on behalf of a resource broker then has a choice. The closest repub-
lisher is always chosen for query answering, but if that cannot be contacted for
some reason, then the agent automatically switches to using another republisher.

Republishers. Stream republishers have proved useful in DataGrid, for both
query answering and for archiving. However, the system does not currently sup-
port the republisher hierarchies discussed earlier. There has not been a need for
these so far, as DataGrid’s testbed was small.

A use case for republisher hierarchies is emerging in the EGEE project. A
job submissions accounting service is needed for the LHC Grid that logs all of
the jobs that run on the Grid. Data about jobs that run at individual sites
is to be collected into site databases, whereas a global history is needed in a
central database. Such a system could be easily configured if R-GMA supported
republisher hierarchies. Also, if global republishers stream from site republishers,
then it becomes easier to automatically recommence a stream that is interrupted
by network failure, as the site republisher maintains a history in a database.

Registry. Currently, publishers can only register views over single relations
with conditions that are conjunctions of equalities of the form “attr = val ”. In
this simple case, views can be stored in a structured form in a relational database
and the satisfiability and entailment tests for finding relevant publishers can be
expressed as SQL queries.

For large Grids, support for views involving aggregation might prove use-
ful. Republishers could then republish summaries of streams rather than whole
streams, and so the volume of information flowing through a hierarchy of repub-
lishers would be reduced.

Stream Integration Techniques for Grid Monitoring 171

8 Conclusions

We have developed techniques for integrating data streams published by dis-
tributed data sources. This has been motivated by the Grid monitoring problem.
We will now consider how well our approach addresses the issues.

8.1 Grid Monitoring as a Setting for Stream Integration

We begin by considering how closely Grid monitoring matches the abstract set-
ting of a data integration system. Grid monitoring involves publishing data from
many independent sources and querying it in a transparent manner. These are
characteristics of a typical information integration setting. A number of chal-
lenges that complicate other information integration problems do not exist here,
though.

Since Grids are dynamic environments where the data of interest is relatively
short lived, it is not necessary to deal with legacy data. Moreover, components of
a Grid obey certain naming conventions to be interoperable. This vastly simpli-
fies the task of matching of entities in different sources when joining information
and eliminates the need for sophisticated matching algorithms. Thus, in a nut-
shell, the case of Grid monitoring is close to the abstract settings that have been
considered in theoretical work on information integration, which makes it an
ideal candidate for applying these techniques [19].

8.2 R-GMA as a Grid Monitoring System

Together with the European Union’s DataGrid project, we have developed and
implemented R-GMA. We will now consider whether R-GMA meets the re-
quirements identified in Section 2.2 for Grid Monitoring.

Through the role of a producer, Grid components can publish their monitor-
ing data. The approach adopted in the architecture allows for both static and
stream data to be published. However, the current implementation only allows
for stream data. The schema provides a global view of all the monitoring data
available. Grid components interested in monitoring data can locate and retrieve
that data through the role of a consumer. This is achieved by posing a query
over the global schema. The actual task of locating and retrieving the data is
automated by the consumer’s agent and the registry. By separating out the tasks
of locating and retrieving data, the system should scale effectively.

The use of different types of temporal queries allows a user of the system to
retrieve data of differing temporal characteristics: the latest-state query allows
a user to find the most recent values of each measurement, the history query
allows for the retrieval of previously published data and the continuous query
provides consumers with a mechanism for being informed whenever a change in
state occurs.

As stated in Section 7, the scalability and robustness of R-GMA is currently
very limited due to the registry being a single point of failure. To overcome
this, it is planned that the registry should be replicated. Also, R-GMA has a

172 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

very limited security model: at present it relies on the fact that the user has
authenticated themselves to the Grid and thus is authorised to use the Grid. In
the future, we envision providing a more fine grained approach through the use
of security views. This would allow publishers to declare who is allowed to “see”
their data.

8.3 R-GMA Compared with Other Grid Monitoring Systems

Several Grid monitoring systems exist, as stated in Section 2.4, The most notable
being the Monitoring and Discovery Service (MDS) which ships with the Globus
Toolkit. We will now consider how R-GMA compares with MDS.

MDS and R-GMA approach the Grid monitoring problem in two different
ways. MDS uses a hierarchical data model with a static name space. While
this is able to capture the components of a Grid well, the use of a hierarchical
model imposes limitations on queries that can be posed at MDS, as stated in
Section 2.4. The use of a static name space means that new concepts cannot be
easily added. Also, MDS can only answer latest-state queries.

On the other hand R-GMA uses the relational model. While it is not straight-
forward to design a suitable relational schema to model the components of a Grid
there are several benefits: (i) arbitrary queries can be posed as the name space
does not need to be designed with queries in mind; (ii) new concepts can be added
to the schema by simply adding a new relation. Also, due to the republishers in
R-GMA, continuous, latest-state and history queries can all be answered.

8.4 Integration Techniques

In R-GMA, consumers of monitoring information pose queries in terms of a
global schema and publish their data as views on that schema. Although the
current implementation of R-GMA makes only limited use of advanced data
integration techniques, such as query rewriting using views, there will be a need
for them as the Grids on which R-GMA is being used grow.

Query rewriting using views translates a global query into a query over a
distributed set of sources, which has to be executed by a distributed query
processor. Such facilities are now being made available in the public domain
by the OGSA-DAI project although the code has not yet reached production
quality [24].

Another future improvement of the system would be to allow more com-
plex continuous queries. This would require additional constructs in the query
language for expressing aggregates and joins over streams. Some work exists
on stream query languages such as CQL [1] for expressing these more complex
queries. Currently, it is unkown how to process such queries in an integration
environment.

The R-GMA approach also raises new research questions. Most notably,
since monitoring data often comes in streams, formal models for integrating
data streams are needed. In the present paper we have defined a framework for

Stream Integration Techniques for Grid Monitoring 173

approaching this task and applied it to a simple type of continuous queries. The
generalisation to more expressive queries will be a topic of future work.

Acknowledgement

The work reported in this paper was supported by the British EPSRC under
the grants GR/R74932/01 (Distributed Information Services for the Grid) and
GR/SS44839/01 (MAGIK-I). The R-GMA architecture was developed jointly
with the members of Work Package 3 in the European Union’s DataGrid.

References

[1] A. Arasu and J. Widom S. Babu. CQL: A language for continuous queries over
streams and relations. In 10th International Workshop on Database Programming
Languages, pages 1–19, Potsdam (Germany), September 2003. Springer-Verlag.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In Proc. 21st Symposium on Principles of Database Systems,
pages 1–16, Madison (Wisconsin, USA), May 2002. ACM Press.

[3] F. Berman. From TeraGrid to Knowledge Grid. Communications of the ACM,
44(11):27–28, 2001.

[4] A. Caĺı, D. Lembo, and R. Rosati. Query rewriting and answering under con-
straints in data integration systems. In G. Gottlob and T. Walsh, editors, Proc.
18th International Joint Conference on Artificial Intelligence, pages 16–21, Aca-
pulco (Mexico), August 2003. Morgan Kaufmann Publishers.

[5] A. Caĺı, S. De Nigris, D. Lembo, G. Messineo, R. Rosati, and M. Ruzzi. DIS@DIS:
A system for semantic data integration under integrity constraints. In Proc. 4th
International Conference on Web Information Systems Engineering, pages 335–
339, Rome (Italy), December 2003. IEEE Computer Society.

[6] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-
braker, N. Tatbul, and S. Zdonik. Monitoring streams—a new class of data man-
agement applications. In Proc. 28th International Conference on Very Large Data
Bases, pages 215–226. Morgan Kaufmann Publishers, September 2002.

[7] The CrossGrid Project. http://www.crossgrid.org, July 2004.
[8] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information

services for distributed resource sharing. In 10th International Symposium on High
Performance Distributed Computing, pages 181–194, San Francisco (California,
USA), June 2001. IEEE Computer Society.

[9] The DataGrid Project. http://www.eu-datagrid.org, July 2004.
[10] DataGrid WP3 Information and Monitoring Services. http://hepunx.rl.ac.uk/

edg/wp3/, July 2004.
[11] Enabling Grids for E-science in Europe. http://public.eu-egee.org/, July 2004.
[12] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infras-

tructure, chapter 2: Computational Grids, pages 15–51. Morgan Kaufmann, 1999.
[13] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling

scalable virtual organization. The International Journal of High Performance
Computing Applications, 15(3):200–222, 2001.

[14] Global Grid Forum. http://www.ggf.org, July 2004.
[15] Globus Toolkit. http://www.globus.org, July 2004.

174 Andy Cooke, Alasdair J.G. Gray, and Werner Nutt

[16] High Energy Nuclear Physics InterGrid Collaboration Board.
http://www.hicb.org/glue/glue.htm, July 2004.

[17] A. Halevy. Answering queries using views: A survey. The VLDB Journal,
10(4):270–294, 2001.

[18] W.E. Johnston, D. Gannon, and B. Nitzberg. Grids as production computing
environments: The engineering aspects of NASA’s Information Power Grid. In
8th International Symposium on High Performance Distributed Computing, pages
197–204, Redondo Beach (California, USA), August 1999. IEEE Computer Soci-
ety.

[19] M. Lenzerini. Data integration: A theoretical perspective. In Proc. 21st Sym-
posium on Principles of Database Systems, pages 233–246, Madison (Wisconsin,
USA), May 2002. ACM Press.

[20] A.Y. Levy, A. Rajaraman, and J.J. Ordille. The world wide web as a collection of
views: Query processing in the Information Manifold. In Proc. Workshop on Ma-
terialized Views: Techniques and Applications, pages 43–55, Montreal (Canada),
June 1996.

[21] L. Li and I. Horrocks. A software framework for matchmaking based on semantic
web technology. In Proc. 12th International World Wide Web Conference, pages
331–339, Budapest (Hungary), May 2003. ACM Press.

[22] P. Liberatore. The complexity of checking redundancy of CNF propositional
formulae. In Proc. 15th European Conference on Artificial Intelligence, pages
262–266. IEEE, IOS Press, July 2002.

[23] W. Matthews and L. Cottrel. The pinger project. http://www-
iepm.slac.stanford.edu/pinger/, July 2004.

[24] Open Grid Services Architecture–Data Access and Integration (OGSA-DAI).
http://www.ogsadai.org.uk, July 2004.

[25] M. Paolucci, T. Kawamura, T.R. Payne, and K.P. Sycara. Semantic matching
of web services capabilities. In Proc. International Semantic Web Conference,
volume 2342 of Lecture Notes in Computer Science, pages 335–339, Chia (Sardinia,
Italy), June 2002. Springer-Verlag.

[26] B. Plale and K. Schwan. Dynamic querying of streaming data with the dQUOB
system. IEEE Transactions on Parallel and Distributed Systems, 14(3):422–432,
April 2003.

[27] R.L. Ribler, J.S. Vetter, H. Simitci, and D.A. Reed. Autopilot: Adaptive con-
trol of distributed applications. In 7th International Symposium on High Per-
formance Distributed Computing, pages 172–179, Chicago (Illinois, USA), August
1998. IEEE Computer Society.

[28] M.A. Shah, S. Madden, M.J. Franklin, and J.M. Hellerstein. Java support for data-
intensive systems: Experiences building the Telegraph dataflow system. SIGMOD
Record, 30(4):103–114, 2001.

[29] C. Shahabi. AIMS: an Immersidata management system. In Proc. 1st Biennial
Conference on Innovative Data Systems Research, Asilomar (California, USA),
January 2003. Online Proceedings.

[30] W. Smith. A system for monitoring and management of computational Grids. In
Proc. 31st International Conference on Parallel Processing, Vancouver (Canada),
August 2002. IEEE Computer Society.

[31] M. Sullivan. Tribeca: A stream database manager for network traffic analysis.
In Proc. 22nd International Conference on Very Large Data Bases, page 594,
Bombay (India), September 1996. Morgan Kaufmann Publishers.

Stream Integration Techniques for Grid Monitoring 175

[32] T. Sutherland and E.A. Rundensteiner. D-CAPE: A self-tuning continuous query
plan distribution architecture. Technical Report WPI-CS-TR-04-18, Worcester
Polytechnic Institute, Worcester (Mass., USA), April 2004.

[33] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and R. Wolski.
A Grid monitoring architecture. Global Grid Forum Performance Working Group,
March 2000. Revised January 2002.

[34] J.D. Ullman. Information integration using logical views. In Proc. 6th Interna-
tional Conference on Database Theory, volume 1186 of Lecture Notes in Computer
Science, pages 19–40, Delphi (Greece), January 1997. Springer-Verlag.

[35] G. Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, 25(3):38–49, March 1992.

Information Release Control: A Learning-Based
Architecture

Claudio Bettini1, X. Sean Wang2 and Sushil Jajodia3

1 DICo, University of Milan, Italy, and
Center for Secure Information Systems, George Mason University, Virginia

bettini@dico.unimi.it
2 Department of Computer Science, University of Vermont, Vermont, and

Center for Secure Information Systems, George Mason University, Virginia
xywang@cs.uvm.edu

3 Center for Secure Information Systems, George Mason University, Virginia
jajodia@gmu.edu

Abstract. Modern information system applications involve collaboration in the
form of information flow through organization boundaries. Indeed,
organizations have vast amounts of information that is shared with other
organizations and even the general public for various purposes. In addition to
the standard network-level protections, systems usually use some access control
mechanisms to protect data. However, access control systems are not designed
to deal with deliberate and accidental release of information, to which the user
has the authority to access but is not supposed to be released. Moreover,
effective access control assumes a perfect categorization of information, which
is increasingly difficult in a complex information system. Information release
control is viewed as complementary to access control, and aims at restricting
the outgoing information flow at the boundary of information systems. This
paper presents a general architectural view of a release control system, and
discusses the integration in the proposed architecture of a module for learning
release control constraints. Continuous learning is applied to adjust the release
control constraints in order to reduce both mistakenly released and mistakenly
restricted documents. The paper describes in detail the process of learning
keyword-based release control constraints.

1 Introduction

The complexity of modern information environments has been growing dramatically
in the last decades. Database-centered systems as well as document-centered systems
have evolved into heterogeneous environments where structured, semi-structured, and
unstructured data from different sources are being exchanged, mostly through Internet
technologies, within and across protected domains. Exchanged data takes the form of

 This paper is a revised and extended version of the one appeared in the Proceedings of the

Sixth IFIP TC-11 WG 11.5 Working Conference on Integrity and Internal Control in
Information Systems, 2003.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics II, LNCS 3360, pp. 176-198, 2004.
 Springer-Verlag Berlin Heidelberg 2004

Information Release Control: A Learning-Based Architecture 177

public web pages, financial reports, technical white papers, biographies of personnel,
memos, etc. Furthermore, the knowledge workers of the organizations send out
messages for collaboration purposes. Security plays an important role in these
environments in the form of secure communication, reliable authentication, and access
controls. However, these security measures are not sufficient; security models and
techniques are needed that can rapidly and effectively evolve to keep pace with the
increasing complexity.

Traditionally, access control has been used to restrict users to limited views of

available data. Although early access control models were devised for structured data,
they are being extended to deal with XML data. However, access control is not
always sufficient to secure complex information environments. Threats may come,
for example, from incorrect categorization of information or users, derivation of
inferences from legally obtained data, unauthorized exchanges of information between
users, and combining data obtained from different internal sources. Indeed, according
to Wiederhold [Wie00], the partitioning of the information into cells in order to
appropriately restrict the access is often under-emphasized and requires a highly
reliable categorization of all information to those cells. It is in the management of that
categorization where many failures occur. In other words, if some information is miss-
categorized, which is highly likely in a complex organization, it is possible for the
sensitive information to be released to unauthorized users. A more serious threat to
sensitive information comes from careless or malicious insiders, individuals or
organizational entities with authorized access to the system. This type of threats are
potentially very damaging since the access control rules (on which organizations rely
heavily) are not effective. Insider threats need to be countered using several different
methods, from intrusion analysis to information forensics.

In addition to the aforementioned security considerations, some legal concerns of
information release need to be addressed. Depending on the category of information,
an organization may wish to append disclaimers, copyright and other legal notices,
and even watermarks.

In this paper we investigate Information Release Control, a complementary

approach to current access control mechanisms, based on checking data not before
they are extracted from data sources, but when they are being released across a gate
representing a critical security boundary. The checking process is not based simply
on source/destination addresses as in current firewall systems, or on simple “dirty
word” matching as in current filtering software, but on a deeper content analysis based
on release constraints. We believe that release control will soon become an important
component for securing and managing information of an organization. From a
technical perspective, our approach is based on the specification and enforcement of
release constraints. Within each constraint we separate the specification of sensitive
data from the way it is matched against any outgoing document. We call the set of
sensitive data controlled items, and the way these items are checked matching rules.
This separation leads to more convenient management of the release control system to
fit the ever-changing organizational security and legal needs, and facilitates the
application and testing of new algorithms for the matching process.

178 Claudio Bettini, X. Sean Wang, and Sushil Jajodia

The definition of a framework for release control includes (i) the specification of
appropriate formalisms to represent controlled items and matching rules, (ii) the
development of techniques and tools to help security officers in the definition of
release constraints, and (iii) the design and implementation of efficient matching
algorithms that are capable of dealing with different matching rules and data formats.
In this paper, we focus on the issues (i) and (ii). Regarding (i), we present an
architectural view of the release control system, and we define a formal framework for
the specification of release constraints, including the proposal of a formal language to
define release constraints for XML documents. The language syntax has been devised
to satisfy a list of expressiveness requirements for the representation within matching
rules of relationships between controlled items and other data in XML documents.
Regarding (ii), we discuss the role that learning techniques could play in the definition
of release control constraints, illustrating how they can actually be applied for learning
keyword-based release control constraints.

To determine what needs to be controlled at the release point, in addition to the

definition of those release constraints derived from experience or high-level
requirements, security officers may query the data store. We call this the “manual”
method. For example, access control rules are usually adopted to restrict the access to
the data store [JSSS01]. When some data have restricted access, it is likely that the
release of such data should be checked. In addition, information that might be inferred
through integrity constraints from restricted data should also be automatically added
to the release constraints store. Furthermore, data that are similar to such restricted
data may also need to be checked at the release point. Due to the involved complexity
of these tasks, “automated tools” are necessary.

In the proposed learning-based approach, the security officer can give an initial

sample set of documents, including both “cleared for release” documents and
“restricted” documents. The system will try to learn an initial set of release control
constraints from the given sample set and from pre-defined template rules. As the
time goes by, when more and more documents are released and restricted (some of the
releasing and restricting are certified by the security officer), the learning process will
periodically adjust the release control constraints to do a better job: reducing the
mistakenly released documents as well as the mistakenly restricted documents.

The remainder of the paper is organized as follows. In Section 2, we describe the

release control architecture. In Section 3 we give a formal foundation for specifying
release control constraints. We also describe a language that can be used to represent
release control constraints on XML documents. In Section 4, we describe how the
architecture could benefit from the integration of a learning module, and in Section 5,
we give a specific example of learning keyword-based release control constraints. We
discuss related work in Section 6 and conclude the paper in Section 7.

Information Release Control: A Learning-Based Architecture 179

2 Release Control Architecture

The release control architecture is based on three basic components: (i) the flow of
documents that are going to be released, (ii) a Data Store from which the documents
are extracted/derived, and (iii) a Release Control System monitored by a security
officer. Figure 1 illustrates these components and their internal structure, ignoring at
this level the machinery needed for the learning process.

Figure 1. General architecture for release control.

The Data Store can include different types of data sources like standard relational
databases, XML or other document type repositories. Documents to be released may
be obtained through queries on different data sources in the Data Store as well as
through access to internet/intranet services. Databases in the Data Store as well as
other sources can be assumed to be protected by usual access control systems.

The main modules in the Release Control System are the Release Constraints Store

and the Matching Module. The first module is the repository of release constraints and
includes constraints explicitly inserted by the security officer, constraints derived from
the data store with processes guided by the security officer, and constraints derived
from examples of restricted and released documents by a learning process, which will
be explained later in this section. An example of derivation of constraints from the
data store is using the information about access control rules in order to derive
sensible associations of terms directly or indirectly bounded to items whose access is
forbidden by those rules. Ontologies and thesauri can also be used to derive new
release constraints by identifying “semantic” similarities to the given ones. As will be
described in detail in Section 3, each Release Constraint (RC) is a pair consisting of a
list of controlled items (CI) and a matching rule (R), with the first identifying

180 Claudio Bettini, X. Sean Wang, and Sushil Jajodia

“sensitive” items (e.g., keywords) and the second specifying how these items should
appear in the documents for the document to be restricted.

Optimization modules (not depicted in the figure) will operate on the Release

Constraints Store. For example, the set of Release Constraints can be reduced
considering the subsumption relationships along the hierarchies of matching rules and
controlled items.

Example 1. Consider a corporate database that includes data about Employee’s
salaries and assume an internal policy prohibits the release of the salary of Mr. Woo,
which is currently 75k. Suppose a release constraint implementing this policy says
that each tuple in the outgoing data should not contain the strings Woo and 75k, while
a second release constraint, possibly related to other policies, says that the string Woo
should not appear anywhere in the outgoing data. In this case the first release
constraint can be disregarded.

Given a set of release constraints in the Release Constraints Store, the Matching
Module is responsible for checking each one of them against the outgoing documents,
and for blocking the release of those for which any of the constraints is satisfied. If we
assume documents in XML form, the module must contain a matching algorithm with
a XML parsing component. A basic version of the algorithm may consider an explicit
listing of controlled items in each release constraint, and hence, it will perform
keyword-based matching. Clearly, appropriate indexing on the keywords appearing in
the release constraints will be necessary, so that all applicable release constraints are
efficiently selected upon reading one of the sensitive keyword in the outgoing data.
Efficient techniques should also be devised in order to keep track of the current
position within the list of controlled items in each release constraint. More
sophisticated versions of the algorithm will consider working with compact
representations of the controlled items (possibly in the form of queries).

A caching system may be devised to avoid reconsidering a document for which a

decision on its release has already been made and the document has not changed since
it was last considered. Clearly, such a system may be tuned to consider temporal
aspects as well as differences among the users asking for release.

3 Formal Framework

For a uniform treatment, we assume the data to be checked before release is in XML
format (the underlying data may be a table resulting from a database query,
semistructured data or a full text document). The data are checked against a number of
release constraints.

3.1 Release Constraints

A release constraint (RC) is a pair R, CI , where R is a matching rule and CI a set of
controlled items.

Information Release Control: A Learning-Based Architecture 181

Each RC is evaluated against the data being released and it prevents its release if
satisfied. Formally, each RC gives a mapping that assigns each document with a label
in {Restrict, Release}. A document Doc can be released if for each release constraint
RC, RC(Doc) = Release, i.e., in the data, the controlled items do not appear in the way
given by the corresponding matching rules.

The set CI of controlled items is a set of tuples of the form A1:a1, A2:a2, ..., An:an ,

where Aj are variable symbols and aj their values. Values can range over several
simple domains (including integer, string, Boolean, etc.) or even complex domains
(admitting single-valued, multi-valued, or possibly structured attribute values).
Variable symbols may actually denote attribute names as well as paths in the
document structure. In the simplest case, variable symbols are omitted and each tuple
is a list of keywords.

Syntactically, the attribute part A of each pair can be specified by an XPath

expression, while the value part a can be specified by a regular expression if it is a
string (e.g., to denote any word starting with a certain prefix) or, in the case it is a
numerical value, it can be specified by a simple condition (op, k) with op {<, =, >, ,

} and k being a number (e.g., to denote all values greater than or equal to a certain
constant).

The matching rule R specifies how a document should be checked against the

controlled items. As an example, when the data to be checked are answers from a
database query, they can be represented as a sequence of tuples. Then, a simple
matching rule may check if one of these tuples contains the attribute values specified
in one of the tuples in the set of controlled items. In the case of data containing
unstructured text, the rule may specify, for example, that the words in each tuple of
the set of controlled items should not appear together in any k-words portion of the
text, where k is a parameter defined by the specific rule. In other words, the set of
controlled items essentially lists the pairs attribute-value involved in a release
constraint, while the matching rule specifies their relationships.

Example 2. Continuing Example 1, we consider a corporate database that includes
data about Employee’s salaries and an internal policy that prohibits the release of the
salary of Mr. Woo. The administrator will set up a RC with CI = { Employee:Woo,
Salary:75,000 } and R equal to the simple rule on relational query results checking all
the query results being released for tuples containing the attribute values specified in
CI. In this case, the system will check each tuple returned, as part of a database query
result, making sure the values Woo and 75,000 do not appear in it.

Note that this is a conceptual model of release constraints. In practice, controlled
items will have compact representations, in the form of SQL queries, general XQuery
expressions including predicates, strings with meta-characters, or other
representations.

The above formal model can be easily extended to represent overriding constraints.

Their purpose is to handle exceptions when matching controlled items against

182 Claudio Bettini, X. Sean Wang, and Sushil Jajodia

outgoing documents. For example, suppose an organization is very concerned with the
release of information related to electronic chips, which may be denoted by many
terms, as e.g., “computer chips”, “cellular phone chips”, ... , or simply “chips”. In this
case, the security officer may set up a release constraint where the keyword “chip” is
the controlled item, with a matching rule such that each document containing the
keyword will be restricted. This policy clearly leads to over-restricting the information
flow with undesired consequences and complaints from the users. For example, it will
prevent the organization even to release documents where the word “chip” is part of
the sequence “chocolate chip”, which should clearly be released. Technically, in order
to accommodate overriding constraints, we allow negative terms in controlled items,
in the form A:a. Example 3 below shows a set of controlled items with a negative
term.

3.2 A Language for Matching Rules on XML Documents

The description of matching rules requires a formal language that depends on the
format of outgoing documents. Since we consider XML documents, we first identified
a list of expressiveness properties, which we consider necessary for our task.

1. The language should be able to express the maximum distance between all pairs of

values as a pre-determined upper bound. In terms of XML this may be the number
of edges in the XML tree that separate the nodes storing the values.

2. The language should be able to express the presence of certain nodes (with
particular labels, semantic tagging, degree, type, e.g., leaf, root, etc.) in the path
between the pair of nodes for which we consider the distance in the XML structure.

3. The language should be able to express relationships between nodes. Example of
relationships include the difference in depth in the XML tree, the difference in the
semantic tagging possibly attached to the nodes, the presence of a common
ancestor with a specific tag, relationships between node attributes, etc.

4. The language should be able to discriminate the order of the values in the XML
structure. The order may be particularly relevant in overriding. In our chocolate-
chip example above, the word ‘chocolate’ must appear before the word ‘chip’.

Based upon the above expressiveness requirements, we propose a formal language for
matching rules; the language expressions can be divided into cardinality rules and
node-relation rules. Each matching rule is represented as a conjunction of a
cardinality rule and one or more node-relation rules.1

Definition 1.

 A cardinality rule has the form NumVal k where k is a positive integer
and NumVal is a language keyword denoting the number of different values specified
in the controlled items that should be observed in the document.

Hence, a cardinality rule specifies that the number of these values must be at least

k, not considering negative terms in the controlled items representing overriding

1 Alternative matching rules (disjunctive behavior) can be established by adding more release
control rules with the same controlled items.

Information Release Control: A Learning-Based Architecture 183

conditions. If no cardinality rule is given, a default cardinality rule is assumed with
k=1; this is the most conservative choice.

Example 3. Given a set of controlled items (A1:a1, A2:a2, A3:a4, A4:a4), a
cardinality rule NumVal 2 would restrict any document that would contain at least
two of the positive controlled items; i.e., either A1:a1 and A3:a3, or A1:a1 and A4:a4 or
A3:a3 and A4:a4, but not containing A2:a2. In the case of XML documents, by
containment of A:a we mean the presence of a node/attribute identified by A and
having text/value a.

In order to formally characterize node-relation rules, we define first atomic distance
formulas and atomic node formulas. A set of nodes is identified in outgoing XML
documents for each controlled item. For example, when the attribute part A is empty,
for each controlled item value a, a node N is part of the set identified in the document
if a is exactly the content of the XML element represented by N. Intuitively, node-
relation rules specify properties on these nodes.

In the definitions, the notation |P(N)| stands for the length of the path P in the XML
tree of the document from the root to node N. Clearly, when N is the root node of the
XML document, |P(N)| = 0.

The language also allows paths to be specified relatively to other paths by applying
the following operators:

 P1 P2 (Path Intersection)

 P1 P2 (Path Difference)

 Prefixk(P) (Path Prefix of length k)

 Suffixk(P) (Path Suffix of length k)

Definition 2.

Definition 3.

 An atomic distance formula has the form:

 |P1| op |P2|, where P1, P2 are paths in the XML document tree and op is in { = , ,
>, ,< , }, or

 |P| op k, where P is a path in the XML document tree, op is in { = , , >, ,< , },
and k is a non-negative integer.

 An atomic node formula compares a node property with a constant
value or with the property of a different node. Atomic node formulas can be specified
as follows:
 Comparison of values (element values identified by predicate Value and attribute

values by predicate AttrValue).
 Value(N1) op Value(N2), where op is in { = , , >, ,< , } (applies only to

numeric values).

184 Claudio Bettini, X. Sean Wang, and Sushil Jajodia

 Value(N) op k, where k is an integer and op is in { = , , >, ,< , } (applies only
to numeric values).

 Value(N1) rel Value(N2), where rel is in { =, , substr, ... } (applies only to string
values).

 Value(N) rel string, where string is any string and rel is in { =, , substr, ... }
(applies only to string values).

 AttrValue(N1,attrName) op AttrValue(N2,attrName), where op is in { = , , >, ,
< , } (applies only to numeric values).

 AttrValue(N,attrName) op k, where k is an integer and op is in { = , , >, ,< , }
(applies only to numeric values).

 AttrValue(N1,attrName) rel AttrValue(N2,attrName), where rel is in { =, , substr,
... } (applies only to string values).

 AttrValue(N,attrName) rel string, where string is any string and rel is in { =, ,
substr, ... } (applies only to string values).

 Comparison of node meta properties
 Degree(N) op k, where Degree(N) denotes the number of children of N in the tree,

k is a non-negative integer and op is in { = , , >, ,< , }. Clearly, all leaf nodes
have degree ‘0’.

 Degree(N1) op Degree(N2), where op is in { = , , >, ,< , }.
 Order(N1) op Order(N2), where op is in { = , , >, ,< , } and Order() is not an

attribute, but a function assigning a unique value to each node in the XML tree,
according to a specific order (e.g., preorder).

 Tag(N) rel string, where string is any string and rel is in { =, , substr, ... }.
 Tag(N1) rel Tag(N2), where rel is in { =, , substr, ... }.

Definition 4. A node-relation rule NR(A1:a1, ..., Ar:ar) is represented by a Boolean
node formula. A node formula is recursively defined from the set of atomic distance
formulas and atomic node formulas by applying the standard conjunction and
negation operators as well as quantification on nodes.

Existential quantification has the form: N P: F(N), where N is a node appearing
in the path P of the XML tree and F(N) is a node formula. Since negation is allowed,
universal quantification and disjunction are implicitly part of the language.

We now illustrate through some examples how the proposed language addresses

the expressiveness requirements (1-4) listed above.

Example 4. The following matching rule AttrValue(N1,item) = "chip"
AttrValue(N1,item) = AttrValue(N2,item) is satisfied if the attribute item of node N1 has
the same value “chip” as attribute item of node N2. If we also want to check that the
distance between these two nodes in the XML document is less than 3, the following
language expression can be used in conjunction with the above: |P(N1)| + | P(N2)| - 2
* | P(N1) P(N2)| < 3. This example shows how the language addresses the
expressiveness requirement described at point 1 above.

Information Release Control: A Learning-Based Architecture 185

Example 5. The language expression N P(N1): Tag(N) = <Classified> N'
P(N2): Tag(N') = <Classified> can be used to check if in both paths leading to nodes
N1 and N2 there is at least one node having the tag <Classified>. This example shows
how the language addresses the expressiveness requirement described at point 2
above.

Example 6. The following matching rule
 N Suffix2 (P(N1)) : AttrValue(N,item) superstring "component"
is satisfied if either the parent node or the parent of the parent node of N1 has a value
for the attribute “item” which contains the string “component”, as e.g., “electronic-
component”. Note that N1 is identified by testing whether it contains one of the values
in the controlled items. This example, together with the previous ones, shows how the
language addresses the expressiveness requirement described at point 3 above.

Example 7. In order to check how the language addresses the expressiveness
requirement described at point 4 above, consider the following language expression
that could be used in an XML version of our example about the overriding constraint
related to the “chocolate” and “chip” occurrence: Value(N1) = "chocolate"
Value(N2) = "chip" Order(N1) < Order(N2) N Suffix1 (P(N1)) N'
Suffix1 (P(N2)) Order(N) = Order(N'). Here, the first occurrence of the function
Order() is used to enforce document restriction only if node N1 precedes node N2 in
the XML document. The second occurrence is used as a trick to state that nodes N and
N', the parent nodes of N1 and N2 respectively, are actually the same node, i.e., N1 and
N2 are siblings in the XML structure.

Note that paths in atomic distance formulas can be considered constants when a
specific XML document is considered. This is different from nodes in atomic node
formulas that can be both constants and variables. Indeed, they are constants if the
nodes are among the ones corresponding to the values a1, ..., ar in the controlled items,
and variables otherwise. If they are variables they will appear in the node formula
under quantification.

4 The Integration of a Learning Module

While the security officer in some cases may be able to explicitly provide both
controlled items and associated matching rules, we believe there are a large number of
documents to be restricted for which only more vague criteria are available. For this
reason, our framework proposes the integration in the above architecture of a
Learning Module that has the main goal of learning release constraints. In particular,
in this paper we will show how the learning component can generate specific
matching rules starting from controlled items, some domain knowledge, and a training
set containing documents already marked as restricted or released.

In principle, given a sufficiently large training set of positive and negative
examples we may ask a learning algorithm to derive controlled items and matching
rules accordingly to the syntax described above. In practice, this is not a realistic

186 Claudio Bettini, X. Sean Wang, and Sushil Jajodia

requirement: the learning process, and, in particular, the extraction of features from
the examples must be guided by some knowledge about the specific domain. One
possibility is to start with a possible set of “critical” correlated keywords from the
security officer and with a set of parameterized matching rules. For example, the
security officer may consider the distance of two keywords in a document to be a
relevant criterion, while the number of occurrences of keywords not to be a relevant
one. In this case, the upper bound on the “distance” becomes a parameter to be tuned
by the learning process.

The main issue is how to choose appropriate parameterized rules so that the
algorithm may minimize the rate of mistakenly released and mistakenly restricted
documents by tuning the parameters. In order to illustrate the general idea in the
specific context of our matching rules, we give an example, by considering only
cardinality rules. As we have observed in Section 3, the default and most conservative
cardinality rule NumVal k is obtained by using k=1. The value of k may actually be
used as a parameter in the learning process. For example, from the training set it may
be observed that all correctly restricted documents contain at least 2 terms of the
controlled items, while many mistakenly restricted ones contain only one. The value
of k may then be raised to 2. Of course, there are several hypotheses on the document
corpus and on the learning algorithm (including the size of the training set) that should
hold to preserve a correct behavior of the system while reducing its mistakes.

In the context of security, it may be desirable to implement a learning process that

preserves the following “conservativeness” property:

All documents that have been certified as restricted by the security officer will be
restricted by the system.

Preserving this property implies that any derivation of new rules or refinement of
existing rules must lead to a global set of release constraints that is still able to
correctly classify documents that are known to be restricted.

Figure 2 depicts the Learning Module and its integration in the overall architecture,
including a Monitoring Tool that will be discussed below.

4.1 The Learning Module

The learning module has two main functionalities. The first is the derivation of
release constraints for the initial set-up of the system. As mentioned above,
performing this task requires a training set of documents marked to be restricted or
released, approved by the security officer; it also requires some domain knowledge,
possibly in the form of controlled items and/or parametric rules. We impose that the
rules obtained by the learning algorithm will preserve the conservativeness property,
i.e., the system using these rules would correctly restrict at least all documents marked
to be restricted in the training set. The algorithms and strategies involved in this task
under specific assumptions are described in Section 5.

Information Release Control: A Learning-Based Architecture 187

Figure 2. The Learning Module and the Monitoring Tool

The second functionality is the refinement of the system behavior upon the

identification during system operation of mistakenly released and mistakenly
restricted documents. This task is based on the assumption that the security officer
monitors the system behavior and provides feedback to the learning module by
dividing samples of the processed documents in four categories: correctly restricted
(CRes), correctly released (CRel), mistakenly restricted (MRes), and mistakenly
released (MRel). It can be considered a form of online learning since the process may
automatically start once a large enough set of these samples becomes available.2 There
are essentially two approaches to perform this task: (i) Re-applying the learning
process used in the initial set-up considering as the training set the new samples as
well as all documents whose classification has been verified in the past by the security
officer. When the set becomes too large, many strategies are possible, including, for
example, the use of a sliding time window for the past, or of a “least recently used”
strategy. The rules obtained through this process replace the previous ones. (ii)
Refining the current rules using only the new set of CRes, CRel, MRes, and MRel
documents. This is potentially a more efficient approach, since it avoids repeating the
whole learning process, but details on how to implement such an incremental
refinement are very dependent on the learning algorithm.

4.2 The Monitoring Tool

A critical system will have a huge number of documents flowing through it, and
specific strategies must be devised to monitor its behavior in order to provide
feedback to the learning module. The most trivial strategy consists of periodically
extracting samples and forwarding them to the security officer, but it is likely to be
unsatisfactory, since any significant frequency of sampling involves an unsustainable
amount of work for the security officer.

*

2
* Actually, considering the conservativeness property, even a single example of mistakenly

released document can be useful to refine the rules.

188 Claudio Bettini, X. Sean Wang, and Sushil Jajodia

In our architecture we propose to introduce a monitoring tool that filters the
documents based on a “similarity” metric so to drastically reduce the number of
documents to be examined by the security officer. Note that in principle the tool
should be applied both to restricted documents to identify potentially mistakenly
restricted ones, and to released documents to identify potentially mistakenly released
ones. However, while mistakenly restricted documents may have other ways to be
recognized (e.g. feedback from users whose requests have been refused) and are less
critical, the problem is serious for released ones. Also, each restricted document is
associated with the release constraint (controlled items and matching rules) that has
prevented its release. When the security officer examines the document this
association can help recognizing the reason for the sensitivity and, in case of a
mistaken restriction may lead to drop or explicitly modify a rule. Released documents
on the other side have no attached information. Our focus is on tools to detect
potentially mistakenly released documents.

The monitoring tool considers “similarity” of released documents to restricted ones

based on the closeness of the document to the classification threshold. This technique
is still based on learning and details really depend on the specific learning algorithm,
but, intuitively, it works as follows: essential features of documents to be restricted
and to be released can be represented by numerical values, and an n-dimensional
boundary that separates the two types of documents can be found. Then, a document
being examined has the same features computed and the closeness to this boundary
can be evaluated. Intuitively, documents that are close to the boundary are similar
both to restricted and released ones. The monitoring tool should rank the documents
according to their closeness to the boundaries, so that the security officer can
dynamically and asynchronously examine them. For the documents that are being
released, this implies that a copy should be saved and forwarded to the security
officer.

The monitoring tool also uses other techniques to identify potential MRel

documents:
 The use of ontologies and thesauri to substitute words or structures with those

that appear in controlled items.
 The explicit relaxation of some of the rules. For example, increase distance (for

distance based condition), decrease cardinality, allow regular expression in the
string literals, dropping rules by making them always satisfied (e.g., indefinite
order, infinite distance).

Intuitively, the application of these techniques, as well as of the learning based one,

should be guided by the goal of identifying a very small fraction of the released
documents. This is both required due to the limited resources and, more importantly,
by the implicit assumption that security officer policies are quite conservative: it is
more likely that few restricted documents have been incorrectly released.

These components of the architecture operate asynchronously with respect to the
main Release Constraint System.

Information Release Control: A Learning-Based Architecture 189

5 Learning Keyword-Based Release Control Constraints

Learning for the purpose of obtaining specific release control constraints plays an
essential role. As observed in previous sections, domain experts (possibly security
officers) should guide the learning by giving relevant features that the learning
process should focus on. In this section, we study, in more detail, such a feature-based
learning when keywords-based release control constraints are considered.

In general, a feature-based learning requires that domain experts provide certain
domain knowledge to the task of learning. The domain knowledge specifies what
types of features are important for the task at hand. A learning mechanism is to
identify the specific features, within the given types, that can be used to distinguish
between different sets of documents.

We believe this approach is rather useful in practice. Indeed, in information
retrieval techniques, features of texts are routinely used in deciding the relevance of
documents. For example, text appearing in subject line, title, or abstract, may be more
important than that appearing in the body of a document. However, the features used
in information retrieval are usually “hard coded” into the information retrieval
systems. This may be reasonable for documents that do not have much of structure.
When a document is represented in XML, features of various types need to be
considered.

Often, specific domains of applications determine the features that are important in
XML documents. For example, in applications where documents are structured as a
hierarchical tree (e.g., parts contain chapters, chapters contain sections, and section
contain paragraphs), it is important to talk about contents belonging to a particular
level of the hierarchy (e.g., two sections of the same chapter). Hence, it is important
for the domain experts to specify certain ‘generic’ types of features that are relevant to
the domain.

For release control, the above discussion about domain-specific features implies the
following strategy for generating release control rules. Firstly, the domain experts
specify certain type of features that they consider relevant. Secondly, the learning
system discovers the conditions on the features for the release control purpose. In the
following, we illustrate this approach for keyword-based release control.

5.1 Keyword-Based Features

We assume the controlled items are simply keywords, and each feature specifies a
relationship based on particular ways of appearance of these keywords in a document.
The “particular ways” of appearance is a type of feature given by a domain expert. We
codify such features by using the notion of a feature function.

190 Claudio Bettini, X. Sean Wang, and Sushil Jajodia

Definition 5.

Definition 6.

 A feature function is a function f such that, given an XML document
Doc and m nodes of Doc, it returns a tuple of n values, i.e., f(Doc, N1, ... , Nm) =
(a1, ... , an).

Note that the functions we define are on the nodes of XML documents. We still call

them keyword-based since we will use the appearance of keywords to determine
which nodes in the XML document to consider, as we will show later. Intuitively, the
values returned by the feature function are values of parameters that may be
automatically learned.

Example 8. The following are three example of features:

 Distance feature: dist(Doc, N1, N2) = D, where D is an integer parameter, and
dist(Doc, N1, N2) is defined as |P(N1)| + | P(N2)| - 2 * | P(N1) P(N2)|. This
feature extracts the distance between the two nodes when the document tree is
viewed as a graph.

 Least common ancestor feature: lca(Doc, N1, N2) = T, where T is the tag of the
node defined by Suffix1(P(N1) P(N2)). Here T is a string and P(Ni) is the path
from the root of Doc to node Ni. This feature extracts the tag value of the
lowest (in terms of the node level) common ancestor of the two given nodes.

 Ordering: ocd(Doc, N1, N2) = rel, where Order(N1) rel Order(N2). Here, rel is
one of the relational comparison symbols. This feature gives the order
relationship between two nodes.

In the above examples, each feature function only returns one value (more
specifically, a tuple with one value in it).

The above feature functions can naturally be used for specifying conditions on the
appearance of keywords in XML documents. For example, given two keywords K1
and K2, we may want to check for their appearance within a certain distance in an
XML document. This can be achieved by specifying a condition involving the
distance of the nodes that “contain” K1 and K2, respectively. More formally, we define
the notion of occurrences of keywords in an XML document as follows.

 Given a set of keywords = {K1 , ... , Kn} and a document Doc, an m-

occurrence of in Doc, where m is an integer no greater than the number of
elements in , is a partial mapping occ() from to the nodes of Doc such that
Value(occ(Ki)) = Ki for each i=1,..., n if occ(Ki) is defined, and the number of Ki with
occ(Ki) defined is exactly m. occ() is said to be a maximum one if it is defined on the
maximum number of keywords in among all the occurrences of in Doc.

The above definition may be generalized to allow mappings considering Ki, not

only as the value of the XML element corresponding to the node occ(Ki), as stated by
the predicate Value() (see Section 3.2), but also as the value of any attribute of the
element corresponding to occ(Ki). To simplify the presentation, in the following we
ignore this generalization.

Information Release Control: A Learning-Based Architecture 191

Example 9. In the XML document represented in Figure 3, there are seven 2-
occurrences of {“A”, “B”, “K3”}. Note that in the XML tree representation, we only
show the node values in the XML tree. Other information of the XML document is
omitted. The labels within the nodes (within the circle) are meant to identify the nodes
for presentation purpose, and are not part of the XML documents.

Figure 3. An XML document. Figure 4. Another XML document.

Now we are ready to extract keyword-based features from XML documents.

Assume the feature function takes the form f(Doc, N1, ..., Nm) = (a1, ..., an). Then, the
features extracted from the document via function f are represented by the set of n-
tuples given as follows: (a1, ..., an) is a n-tuple of the set if and only if there exists an
m-occurrence occ of in Doc such that f(Doc, occ(K1), ..., occ(Km) = (a1, ..., an).

Example 10. Given the distance feature function and the set of keywords {“K1”,
“K2”}, the set of features extracted from the XML document in Figure 3 is {(2)}. The
set of features for the same keywords extracted from the XML document in Figure 4
is {(2), (4)}.

 Together with a set of keywords (used as controlled items), a Boolean condition
based on the features extracted via feature functions can be used as a release control
constraint. More specifically, given a document, we extract the features using the
feature functions, and then test the Boolean condition on the features. If anyone of the
specific features satisfies the condition, we should block the release of the document.

Example 11. Suppose a release control constraint specifies the distance between
keywords “K1” and “K2” to be less than 3. Then, none of the documents in Figures
3&4 can be released since each one contains at least one occurrence with distance 2.
Suppose another release control constraint specifies the lowest common ancestor of
keywords “K1” and “K2” to have value “B”. Then, the document in Figure 3 cannot
be released while the one in Figure 4 can.

192 Claudio Bettini, X. Sean Wang, and Sushil Jajodia

5.2 Learning for Keyword-Based Release Control Constraints

A security officer can certainly set up a set of release control constraints by giving a
set of keywords and a condition on the keyword-based features (extracted from a set
of feature functions). In practice, however, it is more likely that system need to learn
from a set of examples to establish the specific release control constraints. In this
subsection, we will show how this may be done for keyword-based release control
constraints.

As mentioned earlier, we assume that (1) a set of feature extraction functions are

set up by domain experts as the likely types of features to be concerned by the release
control constraints; (2) the security officer gives a collection of keyword sets to be
controlled, and (3) a set of documents is provided as learning samples (i.e., the
documents either cleared for release or restricted by the security officer). Given (1),
(2) and (3) above, the task of learning is to give a set of release control constraints by
specifying conditions on the feature values extracted by the feature functions. We now
outline a method to do this. The key issue is to convert this learning problem to one
where traditional learning algorithms can apply.

Assume is the set of keywords we are concerned with. For each feature function

f(Doc, N1, ..., Nm)=(a1, ..., an), we create the following attributes (as in a relational
database schema): For each i, i=1, ..., n, and each subset {K1, ..., Km} (of size m) of

, we get an attribute name f[ai, K1, ..., Km]. We use a relational schema of all such
attributes. Furthermore, we add a document ID as an extra attribute to the relational
schema.

Example 12. Consider the keyword set {K1, K2, K3} and the three features given in
Example 8. Then we have the following 18 attributes (in addition to the document ID
attribute):

dist[D, K1, K2] lca[T, K1, K2] ocd[R, K1, K2]
dist[D, K2, K1] lca[T, K2, K1] ocd[R, K2, K1]
dist[D, K1, K3] lca[T, K1, K3] ocd[R, K1, K3]
dist[D, K3, K1] lca[T, K3, K1] ocd[R, K3, K1]
dist[D, K2, K3] lca[T, K2, K3] ocd[R, K2, K3]
dist[D, K3, K2] lca[T, K3, K2] ocd[R, K , K] 3 2

Of course, certain relationships between the parameters may lead to a reduction of the
number of attributes. For example, since the value for dist[D, K1, K2] is the same as
dist[D, K2, K1], we can omit one if we already have the other. Another example is that
if we know ocd[R, K1, K2], then we implicitly know ocd[R, K2 ,K1], and we can omit
one of these two attributes. From this reasoning, we can reduce the number of
attributes in the example to nine (in addition to the document ID attribute).

By using the training samples, we populate the relation defined by the above
relational schema with feature tuples. More precisely, given an XML document Doc, a
set of keywords , and a maximum occurrence occ of in Doc, we generate a tuple as

Information Release Control: A Learning-Based Architecture 193

follows: For attribute f[ai, K1, ..., Km], it gets a null value if the number of keywords
that occ is defined on is less than m; otherwise, the attribute gets the corresponding
value from f(occ(K1), ..., occ(Km)).

Example 13. Consider the keyword set ={K1, K2, K3} and the XML document in
Figure 3. Consider the occurrence of in the document such that K1 is mapped to n2,
K2 to n3 and K3 to n7. Then, the value for dist[D, K1, K2] is 2, while the value for
ocd[R, K2,K3] is the relation “ < ”.

In the above method, each occurrence of a set of keywords in an XML document
provides a feature tuple to be added to the given relational schema. Given a set of
documents and a set of keywords, we can obtain a set of feature tuples for each
occurrence of keywords in each document.

The learning process requires an initial set of positive examples and an initial set of

negative examples. In our context, positive examples are provided by feature tuples
extracted from a set of documents that have been certified by the security officer to be
restricted, while negative examples are provided by feature tuples extracted from a set
of documents that have been certified for possible release.

Note, however, that there is an apparent difference in the semantics of the feature

tuples in the above two sets. In the set of feature tuples extracted from documents
certified to be “restricted”, a document needs to be restricted even if only one tuple
(among all those that belong to the same document) represents a “dangerous”
relationship.

Example 14. Suppose we want to restrict a document from being released when the
keywords “K1” and “K2” appear within distance 3. In this case, both XML documents
in Figures 3&4 should be restricted. However, not all the distance features of “K1”
and “K2” in Figure 4, namely 2 and 4, satisfy the restricting constraint.

By reducing the learning task to two sets of feature tuples as given above, we can
now apply any traditional learning algorithm [Mit97, Qui96]. In general, the learning
algorithm will produce a classification condition on the parameter values. That is,
given a feature tuple in the relational schema derived as shown above, the
classification condition gives either restrict or release. For each document, if any of
its feature tuple results in the value restrict, then the document should not be released.
This classification condition will be used as the matching rule in a release control
constraint and the corresponding keywords will be the controlled items.

6 Related Work

The concept of information release control has been explicitly introduced recently in
[Wie00, Mon01, RW01], but a general formal framework does not currently exist.

194 Claudio Bettini, X. Sean Wang, and Sushil Jajodia

Some form of control over outgoing data has been performed since a long time in
different contexts, but it has been mostly based on basic filtering tools, and heuristics
have been directly coded into programs. An attempt to specify rules in a high level
language is represented by Felt [Swa94], which, among its features, provides
language statements to identify words, or parts of words in documents and to drop or
substitute these words. Restricting rules are then compiled into a program for
automatic matching. Despite we are not aware of any structured formal framework for
release control as the one we are proposing, we should mention the very active
research field of information filtering which also includes publication/subscription
systems.

An information filtering system is an information system designed for unstructured
or semistructured data [BC92], as opposed to typical database applications that work
with highly structured data. With respect to the general information retrieval
paradigm, in which a large body of data has to be searched against a specific user
search criteria, in information filtering it is usually the case that there are a large
number of specifications about information needs of a large number of people and/or
tasks, and they all have to be matched against the same text data, in most cases
dynamically produced and distributed by some data sources. Publication/subscription
systems (see, e.g., [FJL+01] and [ASS+99]) are an instance of information filtering
applications. For example, consider the task of sending to each user subscribing to a
news service the subset of the daily news specified in his profile. The analogy with
our work is quite clear: the set of release constraints can be considered a set of
subscriptions, and any matching against the outgoing data leads to a specific action,
which usually is preventing the release of the data. Despite this analogy, our goal is to
deal with a more heterogeneous set of data that includes also structured data resulting
from database queries.

Some work has been done specifically on XML documents filtering for
publication/subscription systems [AF00, DFFT02, PFJ+01]. The XFilter project
[AF00] is considering Xpath expressions as subscription specifications; these
expressions are then converted into FSM (Finite State Machines) that react to XML
parsing events. Algorithm performance is improved by using indexing techniques to
limit the number of FSM to execute for a given document. While XFilter makes no
attempt to eliminate redundant processing for similar queries, the YFilter system
[DFFT02] combines multiple queries into a single NFA (Nondeterministic Finite
Automaton) allowing a substantial reduction in the number of states needed to
represent the set of user queries. The ideas in [FJL+01] are also used in an XML
filtering system, Webfilter [PFJ+01], which also allows arbitrary XPath expressions as
filtering preferences. Differently from [AF00, DFFT02], Webfilter adopts set oriented
techniques including a dynamic clustering strategy to limit the number of
subscriptions to consider at each XML event. In [PFJ+01], Webfilter is reported to be
able to process substantially more subscriptions and XML documents per second than
XFilter. We are considering the algorithms and techniques proposed in this area for
their adaptation to implement the matching module of our architecture. However, it is
still not clear if the algorithms can be adapted to our language for matching rules and
if they are compatible with the specific requirements that a security application
imposes.

Information Release Control: A Learning-Based Architecture 195

Alternative approaches for the matching module are represented by continuous
query techniques [CCC+02, CDTW00, MSHR02].

Our work is also related to what is commonly known as Internet filtering software.

Filtering or blocking software restricts access to Internet content through a variety of
means. It may scan a Web site’s content based on keywords, phrases or strings of text.
It may also restrict access based on the source of the information or through a
subjective ratings system assigned by an anonymous third party. Mostly, this software
has been focused on blocking pornographic content, and it has not been considered
very successful until now, either for under-blocking or over-blocking Internet content.
This is partly due to the way blocking criteria have been devised and partly from the
inherent complexity of the task. Despite some aspects are very related, we are
considering several issues about the treatment of structured and semi-structured data
while the data considered by these systems is usually unstructured, or the structure it
has it is totally unknown. Regarding our learning-based approach, the general
techniques to learn the release constraints from a training set of positive and negative
examples are well known [Qui96, Mit97]. Learning has been extensively applied in
text categorization and text filtering [Seb02], but efforts to study and apply learning
techniques for the categorization and filtering of XML documents have just recently
started and pose many open questions. We plan to investigate further the problem of
learning release constraints and of refining the constraints considering, in particular,
recent statistical learning approaches [CST00].

Regarding our intention of integrating keyword-based techniques with text
categorization algorithms, we will take into account the results of the Genoa
Technology Integration Experiment [Mon01] performed as part of a DARPA project
on boundary control. In the experiment keyword-based and NLP (Natural Language
Processing) techniques were compared in their accuracy on a concrete experimental
scenario; the experiment involved a corpus of heterogeneous documents that had to be
controlled for the release of potentially sensitive information for terrorist attacks. (The
scenario referred in particular to the Aum Shinrikyo Japanese cult that bombed the
Japanese metro system with an anthrax pathogen.)

Release control is also clearly related to access control. An access control model

provides a formalism to define policy rules regulating the access to certain data by
certain users, and a mechanism to consistently apply the rules and enforce the global
policy (see e.g. [JSSS01]). Access control models have mostly been proposed for
relational databases, but they have been adapted to different data representations as
well, like multimedia databases, object oriented databases and XML data.
Information release control should not be seen as an alternative security approach to
access control, since it has several complementary features. In addition to address
insider attacks, one of them is certainly the ability to prevent the release of sensitive
data that has been assembled using either glitches in the access control policy or
inference/cooperative techniques that are difficult to take into account in the access
control policy. Actually, the automatic derivation of release constraints from access
control rules also provides a way to validate the access control policy. Moreover,
access control rules usually operate at the level of database tables while release
control can be very focused and work at the level of attribute values in the case of

196 Claudio Bettini, X. Sean Wang, and Sushil Jajodia

databases. Some work has been done on enhancing a mandatory access control system
with monitoring database queries in order to avoid inferences that may lead users to
obtain confidential data they are not supposed to get [BFJ00]. However our approach
is different, since we plan to automatically derive the specification of appropriate
release constraints from the database and metadata constraints that can be used for
inference. In contrast, the approach in [BFJ00] keeps a history of all the queries users
have made, and upon a new query it computes what can be discovered by the user
with that information; the access is granted only if nothing in the resulting set is
confidential. In this case complex inference must be performed at each user query.

Finally, a large amount of work has been done in the past decade on word sense

disambiguation (see, e.g., [Les86]), and ontology-based reasoning (see, e.g., [GL02])
which are important issues for any content-based document management application
and, in particular, for a more accurate release control. An example of use of word
sense disambiguation and natural language processing in boundary control, limited to
text documents, is the Genoa Technology Integration Experiment [Mon01] performed
as part of a DARPA project on boundary control. In our case ontology-based
reasoning is used to add relevant rules and/or feature functions over XML documents.

7 Conclusion

We argue that information release control is a new paradigm for information security
that is complementary to access control. In this paper we presented a general
architecture and formal framework for information release control, including a formal
language to define release constraints for XML documents. We also discussed the role
that learning techniques could play in the definition of release control constraints,
illustrating how they can actually be applied for learning keyword-based release
control constraints.

The above release control system can be useful in a traditional data system, such as

database system, FTP directories, and web sites. More recent applications, such as
web services, can also benefit from release control. Web services [New02] are an
emerging paradigm for Internet computing heavily based on XML and on the SOAP
protocol. Web services present to the network a standard way of interfacing with
back-end software systems, such as DBMS, .NET, J2EE, CORBA objects, adapters to
ERP packages, and others. While standards are currently under definition for
authentication and authorization, as well as for encryption, controlling the information
that is released through a web service to the general internet or to a restricted subset of
cooperating processes will be one of the major issues that will also probably affect the
success of the new paradigm. While the major objectives of the proposed project are
not to develop a specific technology for web services, we envision a very interesting
integration of the technologies that may emerge from our results into a web service
architecture.

Content-based firewall is another interesting application of our release control
system. Current firewall systems are mostly based on selecting incoming and outgoing

Information Release Control: A Learning-Based Architecture 197

packets based on source/destination IP and port numbers. Filtering software based on
dirty-word checking or virus identification in some cases have been integrated. The
content analysis is however quite primitive both in the definition of the filtering
criteria and in the matching algorithms. We advocate an approach that incorporates
the release control into firewall systems to allow more advanced monitoring on the
contents that are released through the firewall.

Acknowledgements

This work was supported by the NSF under grant IIS-0242237. The work of Bettini
was also partly supported by Italian MIUR (FIRB “Web-Minds” project N.
RBNE01WEJT_005). The work of Wang was also partly supported by NSF Career
Award 9875114. The authors would like to thank Nicolò Cesa-Bianchi of the
University of Milan for insightful discussions on computational learning techniques.

References

[AF00] Mehmet Altinel and Michael J. Franklin. Efficient filtering of XML documents for
selective dissemination of information. In Proceedings of 26th International Conference on
Very Large Data Bases, pages 53—64, USA, 2000.

[ASS+99] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and Tushar
D. Chandra. Matching events in a content-based subscription system. In Proceedings of the
Eighteenth Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
53—62, May 1999.

 [BC92] N. J. Belkin and W. B. Croft. Information Filtering and Information Retrieval: Two
Sides of the Same Coin? Communications of the ACM, 35(12):29—38, December 1992.

 [BFJ00] Alexander Brodsky, Csilla Farkas, Sushil Jajodia: Secure Databases: Constraints,
Inference Channels, and Monitoring Disclosures. IEEE Trans. Knowl. Data Eng. 12(6): 900-
919, 2000.

 [CCC+02] Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring streams
– A new class of data management applications. In Proceedings of the 28th International
Conference on Very Large DataBases (VLDB), pages 215—226, 2002.

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: a scalable
continuous query system for Internet databases. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data: May 16—18, 2000, Dallas, Texas, pages
379—390, 2000.

[CST00] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Machines (and other
kernel-based learning methods), Cambridge University Press, UK, 2000.

[DFFT02] Yanlei Diao, Peter Fischer, Michael Franklin, and Raymond To. Yfilter: Efficient
and scalable filtering of xml documents. In Proceedings of the International Conference on
Data Engineering (ICDE), pages 341—342, 2002.

[FJL+01] Francoise Fabret, H. Arno Jacobsen, Francois Llirbat, Joao Pereira, Kenneth A. Ross,
and Dennis Shasha. Filtering algorithms and implementation for very fast Publish/Subscribe
systems. In Proceedings of ACM International Conference on Management of Data
(SIGMOD), pages 115—126, 2001.

198 Claudio Bettini, X. Sean Wang, and Sushil Jajodia

[GL02] Michael Gruninger and Jintae Lee. Ontology: applications and design.
Communications of the ACM, 45(2):39—41, February 2002.

[JSSS01] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahmanian.
Flexible support for multiple access control policies. ACM Transactions on Database
Systems, 26(2):214—260, June 2001.

[Les86] Michael E. Lesk. Automated sense disambiguation using machine-readable
dictionaries: How to tell a pinecone from an ice cream cone. In Proceedings of the SIGDOC
Conference, 1986.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[Mon01] Eric Monteith. Genoa TIE, advanced boundary controller experiment. In 17th Annual

Computer Security Applications Conference. ACM, 2001.
[MSHR02] Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vijayshankar Raman.

Continuously adaptive continuous queries over streams. In Proceedings of the 2002 ACM
SIGMOD international conference on Management of data (SIGMOD), pages 49—60,
2002.

[New02] Eric Newcomer. Understanding Web Services. Addison Wesley, 2002.
[PFJ+01] Joao Pereira, Francoise Fabret, H. Arno Jacobsen, Francois Llirbat, and Dennis

Shasha. Webfilter: A high-throughput XML-based publish and subscribe system. In
Proceedings of the 27th International Conference on Very Large Data Bases (VLDB), pages
723—725, September 2001.

[Qui96] J. R. Quinlan. Learning decision tree classifiers. ACM Computing Surveys, 28(1):71—
72, March 1996.

[RW01] Arnon Rosenthal and Gio Wiederhold. Document release versus data access controls:
Two sides of a coin? In Proceedings of the Tenth International Conference on Information
and Knowledge Management (CIKM), pages 544—546, November 5—10, 2001.

[Seb02] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
Computing Surveys, 34(1):1—47, 2002.

[Swa94] V. Swarup. Automatic generation of high assurance security guard filters. In Proc.
17th NIST-NCSC National Computer Security Conference, pages 123—141, 1994.

[Wie00] Gio Wiederhold. Protecting information when access is granted for collaboration. In
Proc. of Data and Application Security, Development and Directions, IFIP TC11/ WG11.3
Fourteenth Annual Working Conference on Database Security, pages 1—14, 2000.

Enforcing Semantics-Aware Security in

Multimedia Surveillance�

Naren Kodali2, Csilla Farkas3,4, and Duminda Wijesekera1,2

1 Center for Secure Information Systems
2 Dept of Info. Systems and Software Eng.,

George Mason University, Fairfax, VA 22030–4444
nkodali@gmu.edu, dwijesek@gmu.edu

3 Information Security Laboratory
4 Dept. of Computer Science and Engineering,

University of South Carolina, Columbia, SC-29208
farkas@cse.sc.edu

Abstract. Continuous audio-visual surveillance is utilized to ensure the
physical safety of critical infrastructures such as airports, nuclear power
plants and national laboratories. In order to do so, traditional surveil-
lance systems place cameras, microphones and other sensory input de-
vices in appropriate locations [Sch99]. These facilities are arranged in
a hierarchy of physical zones reflecting the secrecy of the guarded in-
formation. Guards in these facilities carry clearances that permit them
only in appropriate zones of the hierarchy, and monitor the facilities
by using devices such as hand-held displays that send streaming media
of the guarded zones possibly with some instructions. The main security
constraint applicable to this model is that any guard can see streams em-
anating from locations with secrecy levels equal to or lower than theirs,
but not higher. We show how to model these surveillance requirements
using the synchronized multimedia integration language (SMIL) [Aya01]
with appropriate security enhancements. Our solution consists of impos-
ing a multi-level security model on SMIL documents to specify surveil-
lance requirements. Our access control model ensures that a multimedia
stream can only be displayed on a device if the security clearance of the
display device dominates the security clearance of the monitored zone.
Additionally, we pre-process a set of cover stories that can be released
during emergency situations that allow using the services of guards with
lower clearances without disclosing data with higher sensitive levels. For
this, we create a view for each level, and show that these views are se-
mantically coherent and comply with specified security polices.

1 Introduction

Physical structures such as air-ports, nuclear power plants and national laborato-
ries are considered critical, and therefore are guarded continuously. Although the
� This work was partially supported by the National Science Foundation under grants

CCS-0113515 and IIS-0237782.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics II, LNCS 3360, pp. 199–221, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

200 Naren Kodali, Csilla Farkas, and Duminda Wijesekera

ultimate security providers are human guards, they are aided by physical surveil-
lance instruments consisting of networked audio-visual devices such as cameras
and microphones. Additionally, such facilities also have a hierarchical structure
reflecting the levels of secrecy of the information contained in them. Accordingly,
people accessing a zone carry appropriate clearances. For example, common ar-
eas such as ticket counters are accessible to all people, but baggage areas are
accessible to an authorized subset only. Furthermore those that are allowed in
the control towers are further restricted, reflecting the sensitivity of the control
information. Thus audio-visual monitoring of these facilities must respect these
sensitivities. For example, the guards that are only allowed in baggage area have
no need to see the cameras monitoring the control towers. Consequently, there
is a need to restrict the distribution of surveillance streams to only those guards
with appropriate levels of clearances. Doing so using the synchronized multime-
dia integration language (SMIL) [Aya01] is the subject matter of this paper.
Here we provide a framework to do so by using SMIL to specify the streaming
media requirements, and a multi-level security (MLS) model for security aspects.
Consequently, we decorate SMIL documents with security requirements so that
appropriate MLS model is imposed. We further show how to utilize the services
of guards with lower clearances to aid in emergencies that may occur in high
security zones by showing appropriately constructed multimedia cover stories.

We use SMIL because of two choices. Firstly, most display devices are now
SMIL compatible [Spy, Nok], and secondly, by using W3C standards and recom-
mendations, our framework can be Web-enabled. Toolkit support to integrate
XML compliant services across various platforms [PCV02, Nok, Bul98, EUMJ]
are available commercially and freely. Therefore, our framework can be imple-
mented with appropriate tools and ported to a wide range of general-purpose
mobile multimedia devices such as those available in automobile navigation sys-
tems and hand-held devices.

Secondly, although SMIL is an XML-like language for specifying synchro-
nized multimedia, unlike XML formatted textual documents, multimedia con-
structs have semantics that predates XML. Therefore, it is necessary to specify
SMIL documents that capture those semantics while enforcing specified secu-
rity policies. We address this issue by proposing a Multi Level Secure Normal
Form (mlsNF) for multimedia documents. Accordingly, we create secure views
appropriate at each level of our MLS model.

Thirdly, given the runtime delays of an operational platform, we show how
to generate an executable appropriate for a candidate runtime, which we refer to
as a display normal form of a SMIL document. We then encrypt media streams
in display normal form and transmit them to intended recipients under normal
and emergency operating conditions.

The rest of the paper is organized as follows. Section 2 introduces multimedia
surveillance and a running example for the problem domain. Section 3 provides
a summary of related work and Section 4 reviews SMIL, the XML-like language
for multimedia. Section 5 describes the algorithm for transforming to the Multi
Level Secure Normal Form (mlsNF)and Section 6 proves the correctness of the

Enforcing Semantics-Aware Security in Multimedia Surveillance 201

transformation algorithm. Section 7 addresses compile time issues and runtime
activities including encryption and resource management. Section 8 concludes
the paper.

2 Multimedia Surveillance

Physical safety of critical infrastructure such as airports, nuclear power plants
and national laboratories require that they be continuously monitored for in-
trusive or suspicious activities. In order to so, traditional surveillance systems
place cameras, microphones [Sch99] and other sensory input devices in strategic
locations. Appropriate combinations of such continuously flowing information
streams provide a clear understanding of the physical safety of the facility un-
der surveillance. Mostly, secured facilities have several degrees of sensitivities,
resulting in categorizing intended users according to their accessibility to phys-
ical locations. Similarly, guarding personnel are also categorized according to
the sensitivity of the information they are authorized to receive under normal
operating conditions. However, in response to unusual circumstances (e.g., emer-
gencies) security personnel may be required to perform actions that are outside
their normal duties leading to the release of data about the unauthorized areas.
For example, in case of a fire in a high security area emergency workers who
are unauthorized to access this area may still be required to obtain fire fighting
materials. For this, they need to know what is the extent of the fire and what
type of fire extinguisher to obtain. However, they should not be able to know
the exact type of the material burning or any information about the burning
area that is not directly necessary for their emergency duties. We address this
problem by providing our multimedia surveillance system with a semantically
rich, pre-orchestrated multimedia cover story repository, so that in emergencies
cover stories can be released to lower security levels.

The main difference between a traditional MLS system and MLS for live
surveillance feeds during day-to-day operations is the need to disseminate classi-
fied information continuously to appropriate personnel for the latter. We assume
a multilevel security classification of physical areas depending on their geograph-
ical location and their corresponding surveillance data is considered to have the
same classification. We develop a methodology to express multimedia composi-
tions with their rich runtime semantics, techniques to enforce integrity and access
control, and enable exploitation of cover stories to disseminate relevant mate-
rial to unauthorized users during emergencies. In addition to enforcing MLS, we
propose to record all sensory inputs obtained using the input devices, to be used
for forensic analysis, as well as to improve the quality of cover stories.

Figure 1 shows a hypothetical research facility with varying levels of sensi-
tivity. Assume that the area enclosed by the innermost rectangle ABCD con-
tains weapons with highest degree of sensitivity and is accessible (and therefore
guarded) by personnel with the highest level of clearance, say top secret (TS).
The area between the rectangles PQRS and ABCD is classified at medium level
of sensitivity and therefore requires personnel with secret (S) security clearances.

202 Naren Kodali, Csilla Farkas, and Duminda Wijesekera

Fig. 1. A hypothetical facility under Surveillance

The area external to PQRS contains least sensitive material, and can be accessed
by unclassified personnel, like visitors and reporters. We classify the areas into
Top-Secret (TS), Secret (S) and Unclassified (UC) security levels with applica-
tion domains, e.g., Dom as categories. Security labels form a lattice structure.
For simplicity, we omit the application domain and use TS, S, and UC as secu-
rity labels. The area inside ABCD is TS, the area inside of PQRS, but outside
of ABCD is S, and the area outside PQRS is UC. Employees, guards, support
services personnel, and general public have TS > S > UC clearances, where >
corresponds to the dominance relation defined in MLS systems. As shown in
Figure 1, an area with higher level of sensitivity is a sub-part of areas with all
lower levels of sensitivities. Therefore, a guard with top-secret clearance may be
used in the classified area, but not vice versa. For surveillance purposes, cameras
(infrared and normal light) and other devices such as microphones are situated
throughout the facility. Multimedia streams emanating from these devices are
continuously used to monitor the facility. We propose a design where all multi-
media data is transmitted to a centralized control facility and then directed to
handheld devices of appropriate security personnel.

Enforcing Semantics-Aware Security in Multimedia Surveillance 203

3 Related Work

A distributed architecture for multi-participant and interactive multimedia that
enables multiple users to share media streams within a networked environment is
presented in [Sch99]. In this architecture, multimedia streams originating from
multiple sources can be combined to provide media clips that accommodate look-
around capabilities. Multilevel security (MLS) has been widely studied to ensure
data confidentiality, integrity, and availability [Osb]. MLS systems provide con-
trolled information flow based on the security classification of the protection
objects (e.g., data items) and subjects of the MLS system (e.g., applications
running in behalf of a user). To provide information confidentiality, data is al-
lowed to flow only from low security levels to higher security levels [Low99].
Information security policies in databases aim to protect the confidentiality (se-
crecy) and integrity of data, while ensuring availability of data. In Multilevel
Secure (MLS) systems direct violations of data confidentiality are prevented
by mandatory access control (MAC) mechanisms, such as those based on the
Bell-LaPadula (BLP) [San93] model. Mandatory (or lattice-based) policies are
expressed via security classification labels that are assigned to subjects, i.e., ac-
tive computer system entities that can initiate requests for information, and to
objects, i.e., passive computer system entities that are used to store information.
Security labels are composed from two components: 1) a hierarchical compo-
nent, e.g., public < secret < top-secret, and 2) a sub-set lattice compartment,
e.g., {} ⊂ {navy} ⊂ {navy, military} and {} ⊂ {military} ⊂ {navy, military},
however, there is no subset relation between {military} and {navy}. Security
labels are formed by combining the two components together, i.e., (top-secret,
{navy}), (secret, {navy, military}), etc. Security labels form a mathematical
lattice structure with a dominance relation among the labels. If no dominance
relation exists among the labels, then they are called incompatible. MAC policies
control read and write operations on the data objects based on the classifica-
tion labels of the requested data objects and the classification label (also called
clearance) of the subject requesting the operation. For simplicity, in this work
we only use the hierarchical component of the security labels, i.e., public < se-
cret < top-secret. However, our results hold on full lattice-based access control
models.

Regulating access to XML formatted text documents has been actively re-
searched in the past few years offering a multitude of solutions. Bertino et al.
[BBC+00] have developed Author-X, a Java based system to secure XML doc-
uments that enforces access control policies at various granularities and corre-
sponding user credentials. Author-X encodes security policies for a set of XML
documents in an XML file referred to as the policy base containing both per-
missions and prohibitions. Damiani et al. [DdVPS00, DdVPS02] developed an
access control model where the tree structure of XML documents is exploited
using XPATH expressions to control access at different levels of granularity. The
smallest protection granularity is an XPATH node, and security policies specify
permissions or prohibitions to all descendent objects of a node.

204 Naren Kodali, Csilla Farkas, and Duminda Wijesekera

Damiani et al. [DdV03] discuss feature protection of XML format images.
Its primary focus is controlled dissemination of sensitive data within an image.
They propose an access control model with complex filtering conditions. This
model uses SVG to render the map of a physical facility. While this model could
be used to represent our application, it is limited in flexibility and adaptability
to certain issues related to physical security using MLS.

Bertino et al. [BHAE02] provides a security framework to model access con-
trol in video databases. They provide security granularity, where objects are se-
quences of frames or particular objects within frames. The access control model is
based on the concepts of security objects, subjects, and permitted access modes,
like viewing and editing. The proposed model is provides a general framework
for the problem domain, but does not explain how access control objects to be
released are formalized and enforced.

Stoica at al. [SF02] present cover stories for XML with the aim of hiding
non-permitted data from the naive user. The work is motivated by the need to
provide secure release of multilevel XML documents and corresponding DTD
files in a semantically correct and inference free manner where security sensi-
tivity is not monotonically increasing along all paths originating from the node.
Substantial amounts of contemporary research addresses real-time moving ob-
ject detection and tracking them from stationary and moving camera platforms
[VCM], object pose estimation with respect to a geospatial site model, human
gait analysis [VSA], recognizing simple multi-agent activities, real-time data
dissemination, data logging and dynamic scene visualization. While they offer
valuable directions to our research model, they are not a panacea to physical
security.

None of the above approaches are completely satisfactory for multimedia
surveillance . They primarily address textual documents and exploit the granu-
lar structure of XML documents. Multimedia for various reasons as stated has
to be treated differently. Synchronization and integration of diverse events to
produce sensible information is non-trivial when compared to textual data. The
process of retrieval without losing the sense of continuity and synchronization
needs better techniques and algorithms which all of the above models do not
completely address. Kodali et al. [KW02, KWJ03, KFW03] propose models for
multimedia access control for different security paradigms. A release control for
SMIL formatted multimedia objects for pay-per-view movies on the Internet
that enforces DAC is described in [KW02]. The cinematic structure consisting
of acts, scenes, frames of an actual movies are written as a SMIL document with-
out losing the sense of a story. Here access is restricted to the granularity of an
act in a movie. A secure and progressively updatable SMIL document [KWJ03]
is used to enforce RBAC and respond to traffic emergencies. In an emergency
response situation, different roles played by recipients determine the media clips
they receive.

In [KFW03] an MLS application for secure surveillance of physical facilities
is described, where guards with different security classification in charge of the
physical security of the building are provided live feeds matching their level in

Enforcing Semantics-Aware Security in Multimedia Surveillance 205

the security hierarchy. This paper is an extended version of [KFW03], in which
multimedia surveillance is described with limited operational semantics.

4 SMIL

SMIL [Aya01, RHO99] is an extension to XML developed by W3C to allow
multimedia components such as audio, video, text and images to be integrated
and synchronized to form presentations [RvOHB99]. The distinguishing features
of SMIL over XML are the syntactic constructs for timing and synchronization
of streams with qualitative requirements commonly known as QoS. In addition,
SMIL provides a syntax for spatial layout including constructs for non-textual
and non-image media and hyperlink support. SMIL constructs for synchronizing
media are 〈seq〉, 〈excl〉 and 〈par〉. They are used to hierarchically specify syn-
chronized multimedia compositions. The 〈seq〉 element plays the child elements
one after another in the specified sequential order. The 〈excl〉 construct specifies
that its children are played one child at a time, but does not impose any order.
The 〈par〉 element plays all children elements as a group, allowing parallel play
out. For example, the SMIL specification 〈par〉〈video src=camera1〉〈audio src =
microphone1〉〈/par〉 specify that media sources camera1 and microphone1 are
played in parallel. In SMIL, the time period that a media clip is played out is
referred to as its active duration. For parallel play to be meaningful, both sources
must have equal active durations. When clips do not have same active durations,
SMIL provides many constructs to make them equal. Some examples are begin
(allows to begin components after a given amount of time), dur (controls the
duration), end (specifies the ending time of the component with respect to the
whole construct), repeatCount (allows a media clip to be repeated a maximum
number of times). In addition, attributes such as syncTolerance and syncMas-
ter controls runtime synchronization, where the former specifies the tolerable
mis-synchronization (such as tolerable lip-synchronization delays) and the latter
specifies a master-slave relationship between synchronized streams. In this pa-
per, we consider only the basic forms of synchronization construct which means,
we do not specify syncMaster and syncTolerance. Thus we assume that compo-
nents of 〈par〉 have equal play out times and they begin and end at the same
time.

An important construct that we use is 〈switch〉 allowing one to switch among
many alternative compositions listed among its components. These alternatives
are chosen based on the values taken by some specified attributes. For exam-
ple, 〈switch〉 〈audio src=”stereo.wav” systemBitrate〉25〉〈audio src=”mono.wav”
systemBitrate 〈 25〉〈/switch〉 plays stereo.wav when the SMIL defined attribute
systemBitrate is at least 25 and mono.wav otherwise. We use this construct to
specify our surveillance application. In order to do so, we define two custom at-
tributes customTestMode that can take values ”normal” and ”emergency” and
customTestSecurity that take any value from (”TS”,”S”,”UC”). The first at-
tribute is used to indicate the operating mode that can be either normal or emer-
gency and the second attribute indicates the security level of streams that can

206 Naren Kodali, Csilla Farkas, and Duminda Wijesekera

be top secret, secret or unclassified. SMIL also requires that every application-
defined attribute (custom attribute in SMIL terminology) have a title and a
default value. It further has a special flag override that makes the value hidden
or visible. When override takes the value hidden, the player is not allowed to
change the value of the custom attributes. That feature is useful in specifying
security attributes that are not to be altered by SMIL players.

Surveillance requirements, such as those in the example given in the SMIL
fragment below specifies which multimedia sources have to be displayed under
the two operating conditions. We assume that the source document specifies the
security label of each source and that MLS policies are used to ensure that guards
are permitted to view only those multimedia sources that are dominated by their
security clearances. For this, we preprocess a given MLS multimedia document
and produce views that are permitted to be seen by guards for each security
classification. Then, we separately encrypt and broadcast multimedia documents
for each category, to the appropriate locations by efficient use of bandwidth.
In order to achieve this objective, we first transform every SMIL document
with proposed security and mode attributes to three SMIL documents, where
all security labels in each document consists of solely one customTestSecurity
attribute, namely the one that is appropriate to be seen by guards with the label
value. We now formally state and prove that this can be done for an arbitrary
SMIL document with our security labels.

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">

<customAttributesMODE>

<customTestMode="Normal" title="Normal Mode"

defaultState="true" override="hidden"

<customTestMode id="Emergency" title="Emergency Mode"

defaultState="true" override="hidden"

<customAttributesMODE> <customAttributesSecurity>

<customTestSecurity id="TS" title="Top-Secret"

defaultState="true" override="hidden"/>

<customTestSecurity id="S" title="Secret"

defaultState="true" override="hidden"/>

<customTestSecurity id="UC" title="Unclassified"

defaultState="true" override="hidden"/>

</customAttributesSecurity>

<body>

<switch>

//Classification is TS(Top-Secret)

<par customTestMODE= "Normal">

<video src="CameraTS1.rm" channel="video1" customTestSecurity="TS"/>

<audio src="CameraTS1.wav" customTestSecurity="TS" />

//Classification is S(Secret)

<video src="CameraS1.rm" channel="video1" customTestSecurity="S"/>

<audio src="CameraS2.wav" customTestSecurity="S"/>

//Classification is U(Unclassified)

<video src="CameraU1.rm" channel="video2" customTestSecurity="S"/>

<audio src="CameraU1.wav" customTestSecurity="S" /> </par>

Enforcing Semantics-Aware Security in Multimedia Surveillance 207

<par customTestMODE= "Emergency">

//All 3 above together (Total of 6 feeds)

//Here are the secret cover stories

<par>

<video src="CoverstoryTS-to-S1.rm" channel="video1"

id="TS-to-Secret" customTestSecurity="S"/>

<audio src="CoverstoryTS-toS1.wav" customTestSecurity="S"/>

</par>

//Here are the unclassified cover stories

<par>

<video src="CoverstoryTS-to-U1.rm" channel="video1"

id="TS-toUC1" customTestSecurity="U"/>

<audio src="CoverstoryTS-to-U1.wav" customTestSecurity="U"/>

<video src="CoverstoryS-to-U1.rm" channel="video1" id="Secret-toUC1"

customTestSecurity="U"/>

<audio src="CoverstoryS-to-U1.wav" customTestSecurity="U"/>

</par>

//Followed by normal the TWO UC camera feeds.

</switch>

</body>

</smil>

As the fragment shows, the document consists of two sections, where the first
section defines the custom attribute customTestMode with values ”Normal” and
”Emergency”. Because the second and the fourth lines of fragment specify that
customTestMode is hidden, the value of this attribute corresponding to each
stream cannot be reset later. The second part of the file consists of a switch
statement consisting of collection of media streams connected by 〈par〉 con-
structs. Notice that there are two section inside the 〈switch〉 statement, where
the first one begins with the line 〈par customTestMODE= ”Normal”〉 and
the second one begins with the line 〈par customTestMODE= ”Emergency”〉.
That specifies that the streams inside be shown under normal and emergency
operating conditions. In this example, each area has a camera and a mi-
crophone to record audio and video streams to be transmitted to appropri-
ate guards. They are named CameraTS1.rm, CamerU1.wav etc. The security
classification of each source is identified by the application defined SMIL at-
tribute customTestSecurity. For example, 〈video src=”CameraTS1.rm” chan-
nel=”video1” customTestSecurity=”TS”/〉 specifies that the video source named
CameraTS1.rm has the Top Secret security level. The intent being that this
source is to be shown only to top-secret guards. As the second half of the doc-
ument shows, there are three audio-visual cover stories named CoverstoryTS-
to-S1.rm to CoverstoryS-to-UC1.wav are shown with the appropriate security
level specified with the attribute customTestSecurity. The main composition is
encoded using a 〈switch〉 statement that is to be switched based on the operating
mode (normal or emergency).

208 Naren Kodali, Csilla Farkas, and Duminda Wijesekera

5 MLS Normal Form and the Translation Algorithm

In this section we define the Multi Level Secure Normal Form (mlsNF) and also
provide the algorithm for transforming an arbitrary SMIL specification into its
MLS normal form.

Definition 1 (MLS Normal Form) We say that a SMIL specification S is
in Multi Level Secure Normal Form (mlsNF) if it is of one of the following forms:

1. It is of the form 〈 par 〉 Cts(S) Cs(S) Cu (S) Cud(S) Cod 〈 /par 〉 where all
attributeTestSecurity attributes in Cts(S), Cs(S), Cu(S) are respectively TS,
S and U. In addition, Cud(S) has no attributeTestSecurity and Cod(S) has
two different value set for attributeTestSecurity.

2. It is of the form 〈 par 〉 Cts(S) Cs(S) Cu (S) Cud(S) Cod(S) 〈 /par 〉 with
one or two components of 〈 par 〉 may be missing. Here Cts(S), Cs(S) and
Cu(S), Cud(S) Cod(S) satisfy requirements stated above.

3. It is of the form Cts(S), Cs(S), Cu(S), Cud(S), Cod(S) where Cts(S), Cs(S),
Cu(S), Cud(S) and Cod(S) satisfy requirements stated above. We say that
Cts(S), and Cs(S) and Cu(S) are respectively the top secret, secret and un-
classified views of the specification S. Cud(S) is the view with missing security
classifications and Cod(S) is the view with contradictory security classifica-
tions.

As stated in Definition 1, a SMIL specification in mlsNF is one that is parallel
composition of at most three specifications, where each specification belongs to
one security class, that are said to be the views corresponding to the respective
security classes. Notice that in Definition 1, the latter two cases are degenerate
cases of case 1 where one or more views of the specification become null. In
attempting to create views from an arbitrary SMIL document, one encounters
two undesirable situations. The first is the missing security classifications result-
ing in a non-null Cud(S). The other is the situation with contradictory security
classification due to over specification. An example under specified SMIL speci-
fication is 〈 audio src= ”myAudio.wav” 〉 , and an example contradictory speci-
fication is 〈 video src= ”myMovie.rm” attributeTestSecurity=TS attributeTest-
Security=S 〉. Thus, it is tempting to avoid such situations by applying com-
pleteness and conflict resolution policies [JSSS01] designed to be used in XML
formatted and databases. Note, that completeness and conflict resolution polices
were intended to be used for inheritance hierarchies. Because SMIL hierarchies
are not due to inheritances and instead they are syntactic constructs for media
synchronization, blindly applying such policies to resolve under and over spec-
ification of SMIL documents destroys the synchronized play out semantics of
media streams. In this paper, we use the neutral policy of discarding under and
over specified fragments Cud(S) and Cod(S) of a SMIL specification S.

Enforcing Semantics-Aware Security in Multimedia Surveillance 209

The Algorithm 1 details the mechanics of conversion from an arbitrary SMIL
specification into mlsNF. It describes how the rewrite should be done when we
encounter different time containers, some of which are nested. The generated
output would have atmost three parallel compositions each corresponding to a
unique security level. The MLS paradigm has an unique property which allows
subjects with a higher classification access to the view of the lower classified
subjects. This algorithm takes this property into consideration when generating
smilNF.

Algorithm 1 TOmlsNF (Conversion to MLS Normal form)
INPUT : Arbitrary SMIL fragment. Possible classifications Top-Secret, Secret, Un-
classified.
OUTPUT : mlsNF
(s) is an arbitrary SMIL specification (as described in 4 with a possible Security
classification.
if (s) is 〈 seq 〉 s1s2 〈 /seq 〉 then

Cts (s) = 〈 seq 〉 〈 par 〉 Cts(s1) 〈 /par 〉 〈 par 〉 Cts(s2) 〈 /par 〉 〈 /seq 〉
Cs (s) = 〈 seq 〉 〈 par 〉 Cs(s1) 〈 /par 〉 〈 par 〉 Cs(s2) 〈 /par 〉 〈 /seq 〉
Cu (s) = 〈 seq 〉 〈 par 〉 Cu(s1) 〈 /par 〉 〈 par 〉 Cu(s2) 〈 /par 〉 〈 /seq 〉

else if (s) is 〈 par 〉 s1 s2 〈 /par 〉 then
Cts (s) = 〈 par 〉 Cts(s1) 〈 /par 〉 〈 par 〉 Cts(s2) 〈 /par 〉
Cs (s) = 〈 par 〉 Cs(s1) 〈 /par 〉 〈 par 〉 Cs(s2) 〈 /par 〉
Cu (s) = 〈 par 〉 Cu(s1) 〈 /par 〉 〈 par 〉 Cu(s2) 〈 /par 〉

end if
if either of Cx(si) are empty for some x ∈ {TS,S,U} and i ∈{1,2} then

Cx(si) in the right hand sides above must be substituted by φ (Si) where φ (si)
is defined as 〈 audio or video src = empty 〉

end if
If Security classification =Top-Secret, then Cts (s) = (s)
If Security classification =Secret, then Cts(s) = φ ,Cs (s) = (s)
If Security classification=Unclassified, then Cts (s) = φ , Cs(s) = φ , and Cu (s)=
(s).
Then let mlsNF (s) = 〈 seq 〉 〈 par 〉 Cts 〈 /par 〉 〈 par 〉 (s) Cs 〈 /par 〉 〈 par 〉 (s)
Cu (s) 〈 /par 〉 〈 /seq 〉 .

We now have to ensure that Algorithm 1 preserves semantics. That is, top
secret, secret and unclassified viewers of a specification S will view Cts(S), Cs(S)
and Cu(S) respectively. This proof is easy, provided that we have a formal op-
erational semantics for SMIL. While providing such semantics is not difficult, it
does not exist yet. Therefore, while we are working on it, we provide a rudimen-
tary operational semantics for the purposes of showing that our algorithms work
as expected.

210 Naren Kodali, Csilla Farkas, and Duminda Wijesekera

5.1 Operational Semantics for SMIL

In this section, we provide a simple operational semantics for media streams and
SMIL documents constructed using 〈par〉, 〈seq〉 and 〈switch〉 commands. The
sole objective of this exercise is to show that Algorithm 1 transforms a SMIL
document to a collection of other SMIL documents to respect this semantics.
The latter is referred to as semantic equivalence [Mul87]. Following customary
practices in programming language semantics, our operational semantics and
the proof of semantic equivalence will be inductive in nature. It is worth noting
that our semantics is only applicable to our application scenario and syntactic
constructs, and its extension to other purposes and constructs form our ongoing
work.

Definition 2 (Timed Display Instance) We say that a quadruple (S, T-
begin, T-end, Security Set) is a timed display instance provided that:

1. S is a basic media element with a finite active duration δ≥ 0 and T-begin leq
T-end are arithmetic expressions of a single real variable t satisfying T-end
= T-begin + δ.

2. Security set a subset of TS, S, U consisting of attributeTestSecurity attribute
values of S.

3. We say that a set of timed display instances is a timed display set provided
that there is at least one timed display element with t as its T-begin value.

4. Taken as expressions containing the variable t, the smallest T-begin value of
a timed display set is said to be the origin of the timed display set. We use
the notation O(TDI) for the origin of the timed display set TDI.

5. Taken as expressions containing the variable t, the largest T-begin value of
a timed display set is said to be the end of the timed display set. We use the
notation E(TDI) for the end of the timed display set TDI.

The following two elements tdi1 and tdi2 are examples of timed display instances.

1. tdi1 = (〈video, src= ”myVideo.rm”, dur=5, attributeTestSecurity=TS 〉, t,
t+7, TS)

2. tdi2 = (〈audio, src= ”myAudio.rm”, dur=10, attributeTestSecurity=U〉,
t+7, t+17, U)

Therefore, {tdi1, tdi2} is timed display set with its origin t and end t+17. The in-
tent here is to consider TDI= {tdi1,tdi2} as a possible playout of the SMIL spec-
ification 〈seq〉 〈video, src= ”myVideo.rm”, dur=5, attributeTestSecurity=TS〉,
〈audio, src= ”myAudio.rm”, dur=10, attributeTestSecurity=U 〉 〈/seq〉 that be-
gin at an arbitrary but thereafter fixed time t and ends at t+17. Now we describe
some algebraic operations on timed display sets that are necessary to complete
the definition of our operational semantics of SMIL. The first is that of origin
substitution defined as follows.

Definition 3 (Algebra of Timed Display Sets: Substitution) Suppose
TDS is a timed display set with the formal time variable t and s is any

Enforcing Semantics-Aware Security in Multimedia Surveillance 211

arithmetic expression possibly containing other real valued variables. Then
TDS(s/t) is the notation for the timed display set obtained by syntactically
substituting all timing values (that is T-begin and T-end values) t by s in all
expressions of TDS.

For the example TDI given prior to Definition 3, TDI(2t+7/t) consists of
tdi1(2t+7/t),tdi2(2t+7/t) where tdi1(2t+7/t) and tdi2(2t+7/t) are defined as:

1. tdi1(2t+7/t) = (〈video, src= ”myVideo.rm”, dur=5, attributeTestSecurity=
TS〉, 2t+7, 2t+21, {TS})

2. tdi2(2t+7/t) = (〈audio, src= ”myAudio.rm”, dur=10, attributeTestSecu-
rity= U〉, 2t+21, 2t+31, {U})

The reason for having Definition 3 is that in order to provide formal semantics
for the 〈seq〉 operator, it is necessary to shift the second child of the 〈seq〉 by
the time duration of its first child and recursively repeat this procedure for all of
〈seq〉’s children. To exemplify the point, the first example the TDI= {tdi1,tdi2}
is infact {tdi1} ∪ TDI′(t+7/t)} where TDI′ is given by tdi′ = (〈audio, src =
”myAudio.rm”, dur=10, attributeTestSecurity = U〉, t, t+10, {U}). We are now
ready to obtain operational semantics for SMIL specifications, provide the fol-
lowing assumptions are valid.

Definition 4 (Basis Mapping) Suppose M is the set of basic media elements
of S. Then any mapping [[]] from M to a set of Timed Display Instances TDI
is said to be a basis mapping for a denotation iff all T-begin elements of M have
the same value t, where t is a real variable. Then we say that [[]] is a basis
mapping parameterized by t.

Lemma 1 (Existence of basis mappings). Suppose M is a set of basic media
streams with time durations. Then M has a basis mapping.

Proof: For each media stream m= 〈type, src= ”...”, dur=value, attributeTest-
Security= ”...” type〉, in M, let [[M]] map to (m, t, t+value, Att Values). Then
[[]] is a basis mapping.
We now use a basis mapping to define operational semantics of any SMIL spec-
ification S as follows.

Definition 5 (Operational Semantics for SMIL) Suppose S is a SMIL
specification and [[]] is a basis mapping for the basic media elements B of S
with the formal parameter t. Then we inductively extend [[]] to S as follows.

1) [[Null]] = Φ
2) [[〈seq〉 S1 S2〈/seq〉]] = [[S1]] U [[S2]](end([[S1]])/t)
3) [[〈par〉 S1 S2〈/par〉]] = [[S1]] U [[S2].
4) [[〈switch〉 S1 S2 〈/switch〉]] = [[S1]] if S1 satisfies the attribute of the

switch. = [[S2]] otherwise if S2 satisfies the attribute of the switch. = Φ other-
wise.

212 Naren Kodali, Csilla Farkas, and Duminda Wijesekera

We now say that the extended mapping [[]] is a semantic mapping parame-
terized by t. It is our position that the informal definition given by the SMIL
specification is captured by our operational semantics, provided we are able to
evaluate the attribute of the switch. This can be easily formalized using custom-
ary practices of program language semantics, and is therefore omitted here for
brevity. We now formally state and prove the semantic equivalence of Algorithm
1. That shows that rewritten specification has the same operational semantics
as the original that we offer as the correctness argument for the rewrite.

6 Correctness of the Translation Algorithm

Theorem 1 (Correctness of Algorithm 1) Suppose that S is a SMIL spec-
ification and [[]] is a semantic mapping parameterized by t. Then [[S]] = [[ml-
sNF(S)]].

Proof: As stated earlier, this proof also proceeds by induction on the structure
of S. Thus, for the sake of brevity, we show one base case and one inductive case.
Example Base Case:
Suppose S is 〈 type src=” ”, dur=n, attributeTestSecurity=”S” type 〉. Then,
by Algorithm 1,

Cts(S) = Null, Cs(S) = S, Cu(S) = Null, Cud(S) = Null and Cod(S) =
Null. Therefore, [[<par>Cts(S) Cs(S) Cu(S) Cud(S) Cod(S) </par>]]=
[[<par>Null S Null Null Null</par>]] = [[Null]] U [[S]] U [[Null]]
U [[Null]] U [[Null]] = [[S]]. Hence [[mlsNF(S)]] = [[S]].

Example Inductive Case:
Suppose S is 〈seq〉 S1 S2〈/seq〉. Then, from Algorithm 1,

[[mlsNF(S)]] =[[<par>Cts(S) Cs(S) Cu(S) Cud(S) Cod(S) </par>]] =
[[Cts(S)]] U [[Cs(S)]] U [[Cu(S)]] U [[Cud(S)]] U [[Cod(S)]] =
[[<seq>Cts(S1) Cts(S2)</seq>]] U [[<seq>Cs(S1) Cs(S2)</seq>]] U
[[<seq>Cu(S1) Cu(S2)</seq>]] U [[<seq>Cud(S1) Cud(S2)</seq>]] U
[[<seq>Cod(S1) Cod(S2)</seq>]]

=
[[Cts(S1)]] U [[Cts(S2)]](end([[Cts(S1)]])/t) U[[Cs(S1)]]
U [[Cs(S2)]] (end([[Cs(S1)]])/t)
U [[Cu(S1)]] U [[Cu(S2)]](end([[Cu(S1)]])/t) U[[Cud(S1)]]
U [[Cud(S2)]] (end([[Cud(S1)]])/t)
U [[Cod(S1)]] U [[Cod(S2)]](end([[Cod(S1)]])/t)

Conversely,

[[S]] = [[<seq> S1 S2 </seq>]] = [[S1]] U
[[S2]](end(S1)/t)
= [[Cts(S1)]] U [[Cs(S1)]] U[[Cu(S1)]] [[Cud(S1)]] U [[Cod(S1)]]
U([[Cts(S2)]] U [[Cs(S2)]] U[[Cu(S2)]] [[Cud(S2)]] U [[Cod(S2)]])
(end(S1)/t)

by the inductive assumption.

Enforcing Semantics-Aware Security in Multimedia Surveillance 213

But notice that

([[Cts(S2)]] U [[Cs(S2)]] U[[Cu(S2)]] [[Cud(S2)]]U
[[Cod(S2)]]) (end(S1)/t)

=
[[Cts(S2)]](end([[Cts(S1)]])/t) U
[[Cs(S2)]](end([[Cs(S1)]])/t) U [[Cu(S2)]](end([[Cu(S1)]])/t) U
[[Cud(S2)]](end([[Cud(S1)]])/t) U [[Cod(S1)]] U
[[Cod(S2)]](end([[Cod(S1)]])/t)

Therefore [[mlsNF(S)]] = [[S]], thereby justifying the inductive case.

6.1 Representing Secure Views in SMIL

On rewriting the SMIL fragment in Section 4 into the MLS Normal form we
create different views for each of the following cases represented as a separate
SMIL document. In the SMIL fragment represented below , we have the format
of such a specification denoting the entire structure of a ”Top-Secret” view in
the normal mode and a ”Secret” view in the emergency mode.

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">

<customAttributesMODE>

<customAttributesSecurity>

<seq>

<switch>

<par customTestMode="Normal" customTestSecurity = "TS">

<par> <video src="Tsamera1.rm" channel="video1" dur="45s"/>

<audio src="TSCamera1.wav" />

</par>

<par> <video src="TSCamera2.rm" channel="video1" />

<audio src="TSCamera2.wav"/> </par> </par>

<par customTestMode ="Normal" customTestSecurity = "S">

XXXXXXXXXX //Normal Form View for Normal Mode "S" Class

</par>

<par customTestMode ="Normal" customTestSecurity = "UC">

XXXXXXXXXX //Normal Form View Normal Mode "UC" Class

</par>

<par customTestMode ="Emergency" customTestSecurity = "TS">

XXXXXXXXXX //Normal Form View for Normal Mode "TS" Class

</par>

<par customTestMode ="Emergency" customTestSecurity = "S">

<video src="SCamera1.rm" channel="video2" dur="25s"/>

<audio src="SCamera1.wav" /> </par>

<par> <video src="Scamera2.rm" channel="video2"/>

<audio src="Scamera2.wav" /> </par>

<par>

<video src="CoverstoryTS1.rm" channel="video1" id="TSCoverstory1"/>

214 Naren Kodali, Csilla Farkas, and Duminda Wijesekera

<audio src="CoverstoryTS1.wav" />

</par>

<par>

<video src="CoverstoryTS1.rm" channel="video1" id="TSCoverstory1"/>

<audio src="CoverstoryTS1.wav" />

</par>

<par customTestMode ="Emergency" customTestSecurity = "UC">

XXXXXXXX//Normal Form View for Emergency Mode "UC" Class

</par> </switch> </seq>

Each view will be made into a SMIL document and named as follows Mod-
eNClassTS.smil, ModeEClassTS.smil, ModeNClassS.smil, ModeEClassS.smil,
ModeNClassUC.smil, ModeEClassUC.smil depending on it mode and classifi-
cation attributes.

7 Runtime Operations

In the most general case, a SMIL specification in mlsNF is of the form 〈par〉 Cts
Cs Cu Cod Cud 〈/par〉 where Cts Cs Cu Cod and Cud respectively have top
secret, secret, unclassified, over specified and under specified security levels. How
one resolves under specification and over specification is a matter of policy, and
is not addressed in this paper. Independently, Cts, Cs, Cu are to be shown to
guards with top secret, secret, and unclassified clearances. In addition, in order
to respond to emergencies, these specifications have a mode switch encode using
a custom attribute attributeTestMode. As observed in Figure 2, this attribute is
to be evaluated at the beginning of a 〈switch〉 statement. That is unsatisfactory
for intended purposes, after this switch statement is executed, the operating
mode could vary many times. Because the 〈switch〉 is evaluated only once, the
SMIL specification is now oblivious to such changes in application situations.
In this section, we show how to rewrite a SMIL document with one 〈switch〉
statement for changing a mode to that one that makes the attributeTestMode be
evaluated at regular intervals. Although in theory any system could switch its
operating mode in an arbitrarily small time intervals, practical considerations
limits this interval to a minimum. This minimum switching granularity may
depend upon many parameters such as hardware, software and the inherent
delays in of switching on firefighting and other emergency related equipment.
Therefore, given a switching delay D, we rewrite the given SMIL document so
that the mode attribute attributeTestMode re-evaluated every D time units. How
that is done is discussed in the next section.

7.1 Informal Display Normal Form

The following SMIL specification given below, has the same structure as the
fragment considered in Section 4. If we want to break up this specification so that
the attributeTestMode is tested each D units of time and the switch reevaluated,
then the fragment S1 can be translated as shown in S2.

Enforcing Semantics-Aware Security in Multimedia Surveillance 215

S1 =<switch> <par attributeTestMode= "normal"> XX </par> <par
attributeTestMode= "emergency"></par> </switch>

S2 = <par dur=D, repeatCount="indefinite"><switch> <par
attributeTestMode="normal"> XX</par> <par
attributeTestMode="emergency">YY </par> </switch> </par>

Notice that the outer 〈par〉 construct specifies that enclosing specification
be executed for duration of D time units and repeated indefinitely. However,
the outer 〈par〉 construct has only one element, namely the switch. Therefore,
the 〈switch〉 construct is executed for infinitely many times, and each time the
attributeTestMode is tested. Given a SMIL specification with the attributeTest-
Mode specified in the form where the switch is reevaluated every D time units
is said to be in display normal form for the attribute attributeTestMode and
time duration D. We can now informally say that every SMIL document where
the attributeTestMode is used in the stated form can be translated into its dis-
play normal form. We stress the informal nature of our argument because of our
commitment to limited operational semantics. However these semantics can be
enhanced so that this construction will preserve semantic equivalence.

7.2 Operational Semantics for Making Display Normal Form
Semantically Equivalent

In this section, we briefly show how our operational semantics of SMIL can
be enhanced so that any SMIL construction with a specified structure and its
display normal form are semantically equivalent. First, we close timed display
sets under finite concatenations and re-interpret SMIL semantics with respect
to them.

Definition 6 (Algebra of TDS: Downward Closure and Concatenation)
Suppose tdi1=(<type src=”xx”, ..dur=d1, attributeTestSecurity=”y”, T-
begin1,T-end1>, {y}) and tdi2=(<type src=”xx”, ..dur=d2, attributeTest-
Security=”y”, T-begin2, T-end2>, {y}) are two timed display units with
the same source, attributeTestSecurity values, security components satisfying
T-end1=T-begin2.

1. Then we say that tdi3=(〈type src=”xx”, ..dur=d1, attributeTestSecurity
=”y”, T-begin1,T-end2〉, {y}) is the concatenation of tdi1 and tdi2. We de-
note the concatenation of tdi1 and tdi2 by tdi1;tdi2.

2. We say that a timed display set TDS is concatenation closed if tdi1,tdi2 ∈
TDS ⇒ tdi1;tdi2 ∈ TDS.

3. We say that a timed display set TDS is downward closed if .=(〈type
src=”xx”, ..dur=d1, attributeTestSecurity=”y”, T-begin1,T-end1〉, {y})
∈ TDS, then =(〈type src=”xx”, ..dur=d1, attributeTestSecurity=”y”,T-
begin1′,T-end1′ 〉,{y})∈ TDS for any T-begin′ > T-begin and T-end′ < t-
end.

216 Naren Kodali, Csilla Farkas, and Duminda Wijesekera

According to Definition 6, downward closure allows any timed display set to
include all segments of already included media streams. Concatenation closure
allows piecing together successive segments of the same stream to obtain longer
streams.

Lemma 2 (Minimal Concatenation Downward Closure of TDS: CD
Closure).

Given a timed display set TDS, the concatenation closure of TDS, TDS∗ is
defined as follows:

1. TDS0={(<type, src”x”,attTestValue=Y> , t, t,{Y}) |(<type, src”x”,
attTestValue =Y > ,t1, t2,{Y}) ∈ TDS and t1 ≤t≤t2}

2. TDS1=TDS
3. TDSn+1=TDSn ;TDS
4. TDS∗ = ∪ {TDSn | 0 ≤n}
5. TDS∧ ={(<type, src”x”,attTestValue=Y >,t1,t2,{Y}) |(<type, src”x”,

attTestValue =Y >,t3,t4,{Y}) ∈ TDS and t1≥ t3 and t4 ≤ t 2}

Then, (TDS∗)∧ is the minimal timed display set containing TDS that is both
concatenation and downward closed.
Proof : Omitted

We now enhance the semantics of SMIL by using CD closure sets of base
sets. Hence, we strengthen definition 5 as follows.

Definition 7 (Enhanced Semantics for SMIL) Suppose S is a SMIL spec-
ification and [[]] is a basis mapping for the basic media elements B of S with
the formal parameter t. Then we inductively extend [[]]+ to S as follows.

1) [[Null]]+ = Φ.
2) [[S’]]+ = ([[S’]])∗∧ for all basic media streams S’ of S.
3) [[< seq > S1 S2 < /seq >]]+ = ([[S1]]+ U [[S2]]+(end([[S1]]+)/t))∗∧

4) [[<par> S1 S2</par>]]+ = [[S1]]+ U [[S2]+.
5) [[<switch> S1 S2 </switch>]]+ = [[S1]]+ if S1 satisfies the attribute of

the switch. = [[S2]]+ otherwise if S2 satisfies the attribute of the switch. = Φ
otherwise.

We now say that the enhanced mapping [[]]+ is a semantic mapping param-
eterized by t. Now we show how this semantics preserves the display normal
form. Notice that the difficulty of the semantics given in definition 5 was with
respect to piecing together successive segments of the same stream. By taking
concatenations, this problem was solved in definition 5. Downward closures were
taken to permit taking all subintervals of permitted streams.

Lemma 3 (Equivalence of Display Normal Form).
The two specifications S1 and S2 have the same semantics.

Informal Proof First observe that if S1 is the specification given on the
left and S2 is the specification given on the right, then tdi ∈ [[S1]]+ iff tdin

Enforcing Semantics-Aware Security in Multimedia Surveillance 217

∈ [[S2]]+. The reason being that S2 executes S1 arbitrarily many times. But,
[[S2]]+ is concatenation and downward closed. Therefore, tdin ∈ [[S2]]+ iff tdi
∈ [[S2]]+. The reader will now see that downward closure was required in order
to obtain tdi ∈ [[S2]]+ from tdin ∈ [[S2]]+.

7.3 Dynamic Runtime Activity

As explained, any given SMIL specification S for surveillance is statically trans-
lated into its MLS normal form mlsNF(S). Then, when the runtime provides
D, mlsNF(S) is translated into its display normal form, say DNF(mlsNF(S),D).
Then the runtime takes each the set of streams within the switch that has du-
ration of D, evaluates the switch, and depending upon the mode encrypts and
transmits either the streams corresponding to normal operating mode or those
that correspond to the emergency operating mode. The SMIL fragment below
shows the display normal form for the Secret View

<smil xmlns="http://www.w3.org/2001/SMIL20/Language"> <head>
<customAttributesMODE>

<customTestMode="Normal" title="Normal Mode"
defaultState="true" override="hidden"
uid="ControllerChoice" />

<customTestMode id="Emergency" title="Emergency Mode"
defaultState="false" override="hidden"
uid="ControllerChoice" />

</customAttributesMODE>
<customAttributesSecClass>

<customTestsecClass id="TS" title="Top-Secret"
defaultState="true" override="hidden"/>

<customTestsecClass id="S" title="Secret"
defaultState="true" override="hidden"/>

<customTestsecClass id="UC" title="Unlassfied"
defaultState="trye" override="hidden"/>

</customAttributesSecClass> <body>
<switch>

<ref src="ModeNClassS.smil" customTestMode ="Normal"
customTestsecClass ="S" /> <ref src="ModeEClassS.smil"
customTestMode ="Emergency" customTestsecClass ="S" />

<ref src="ModeEClassUC.smil" customTestMode ="Emergency"
customTestsecClass ="UC" />

</switch>
</body>

</smil>

218 Naren Kodali, Csilla Farkas, and Duminda Wijesekera

Similarly views for all classification in both the Normal and the Emergency
modes can be created. The mode evaluation procedures for setting of the mode
value associated with a customTestMODE is as follows:

1. The initial setting is taken from the value of the defaultState attribute, if
present. If no default state is explicitly defined, a value of false is used.

2. The URI (Controller Choice) defined by the uid attribute is checked to see
if a persistent value has been defined for the custom test attribute with the
associated id (Normal, Emergency). If such a value is present, it is used
instead of the default state defined in the document (if any). Otherwise, the
existing initial state is maintained.

3. As with predefined system test attributes, this evaluation will occur in an
implementation-defined manner. The value will be (re) evaluated dynami-
cally.

7.4 Quality of Service(QoS) and Encryption Issues

The Service Level Agreement(SLA) determines the specifications and restric-
tions that have to be communicated between the client and the server in order
to maintain good quality [WS96]. The requirements of the processors and mem-
ory (primary and secondary), and other technicalities such as tolerable delay,
loss, pixels have to be negotiated prior or sometimes during the transfer pro-
cess. HQML [GNY+01] proposes an XML based language for the exchange of
processor characteristics. The most important characteristic is the amount of
buffer, in terms of memory that the recipient device should have in order to
maintain continuity. These specifications would be represented within the SMIL
document, so that the recipient device will first prepare or disqualify itself for a
reception. In the proposed model, the QoS parameters are generally negotiated
prior to the display. They could be set as custom defined attributes that have
to resolve to true for the display to happen. We can use some of the standard
attributes of the switch statement systemRequired, systemScreenDepth, and
systemScreenSize to enforce regulation. The SMIL fragment depicted above
shows the QoS Negotiation TAGS in accordance with HQML [GNY+01] and
[WS96]and the Encryption tags applied to the display normal form of the secret
view to achieve fidelity and confidentiality

<smil>
<App name = "Surveillance Facility#3">

<Configuration id = "Level1Guard">
<UserLevelQoS> high </UserLevelQoS>
<UserFocus> memory </UserFocus>

</Configuration>
<Configuration id = "Level2Guard">

<MemUnit mem = "Mbytes"> 5MB </mem>
<UserLevelQoS> Average </UserLevelQoS>

Enforcing Semantics-Aware Security in Multimedia Surveillance 219

<UserFocus> Delay </UserFocus>
<Delayunit del = "Minutes"> 7
<SLAModel> Conform SLA </SLAModel>

</Configuration>
<Configuration id = "Level3Guard">

<UserLevelQoS> high </UserLevelQoS>
<UserFocus> clarity </UserFocus>
<Clarityunit clar= "pixels/inch"> 200 </clar>

</Configuration>
</App> <customAttributes>
//Mode and Security defined here

<customAttributes>
</head>

<body> <seq> <switch>
<par>
<media src=" ModeNClassTS.smil " customTest3 = "Normal"/>
<EncryptedData xmlns=’http://www.w3.org/2001/04/xmlenc#’>
<CipherData>

<CipherValue>123BAVA6</CipherValue>
</CipherData>
</EncryptedData>
</par>
<par>
<media src=" ModeNClassS.smil " customTest3="Emergency"/>
<EncryptedData xmlns=’http://www.w3.org/2001/04/xmlenc#’>
<CipherData>
<CipherValue>65APR1</CipherValue>

</CipherData>
</EncryptedData>
</par>

//Other SMIL views.
</switch> </seq> </body>

</smil>

Mobile handheld viewing devices [EUMJ] that have embedded SMIL players
are the recipients in our architecture. A smartcard, which enforces access control,
is embedded into the display device [KW02, KFW03]. Each display device has a
unique smartcard depending on the classification of the guard that utilizes it and
his/her classification and any other rules set by the controller. A decryption key
associated with the privileges of the guard is also embedded in the smartcard.
When a display device receives an encrypted SMIL document, the smartcard
decrypts the appropriate segment depending on the available key. We encrypt
each view in the document as shown the SMIL fragment with a unique Symmet-
ric Key using the standard XML encryption specification. An inbuilt Cryptix

220 Naren Kodali, Csilla Farkas, and Duminda Wijesekera

Parser [KW02] that is programmed in firmware (or in software) to handle the
decryption process would enable selective decryption of the appropriate view
based on the access privileges as defined in the smartcard. With encryption, we
guarantee that nobody tampers the stream in transit even if there is mediate
stream acquisition.

8 Conclusions

We provided a framework for audio-video surveillance of multi-level secured fa-
cilities during normal and pre-envisioned emergencies. We did so by enhancing
SMIL specifications with security decorations that satisfy MLS security con-
straints during normal operations and provide controlled declassification during
emergencies while maintaining the integrity and confidentiality. Then we showed
how to transform such a SMIL composition to its MLS normal form that preserve
runtime semantics intended by SMIL constructs, and how to create SMIL views
compliant with MLS requirements. Given the delay characteristics of a runtime,
we showed how to transform a SMIL document in MLS normal form so that the
operating mode can be switched with a minimal delay while respecting runtime
semantics. Our ongoing work extends this basic framework to incorporate richer
multimedia semantics and diverse security requirements such as non-alterable
media evidence and two way multimedia channels.

References

[Aya01] Jeff Ayars. Synchronized Multimedia Integration Language. W3C Recom-
mendation, 2001. http://www.w3.org/TR/2001/REC-smil20-20010807.

[BBC+00] Elisa Bertino, M. Braun, Silvana Castano, Elena Ferrari, and Marco
Mesiti. Author-x: A java-based system for XML data protection. In
IFIP Workshop on Database Security, pages 15–26, 2000.

[BHAE02] Elisa Bertino, Moustafa Hammad, Walid Aref, and Ahmed Elmagarmid.
An access control model for video database systems. In Conferece on
Information and Knowledge Management, 2002.

[Bul98] David Bulterman. Grins: A graphical interface for creating and play-
ing smil documents. In Proc. of Seventh Int’l World Wide Web Conf.
(WWW7). Elsevier Science, New York, April 1998.

[DdV03] Ernesto Damiani and Sabrina De Capitani di Vimercati. Securing xml
based multimedia content. In 18th IFIP International Information Secu-
rity Conference, 2003.

[DdVPS00] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi,
and Pierangela Samarati. Securing XML documents. Lecture Notes in
Computer Science, 1777:121–122, 2000.

[DdVPS02] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi,
and Pierangela Samarati. A fine grained access control system for xml
documents. ACM Transactions on Information and System Security, 5,
2002.

[EUMJ] E. Ekudden, U.Horn, M.Melander, and J.Olin. On-demand mobile media-
a rich service experience for mobile users.

Enforcing Semantics-Aware Security in Multimedia Surveillance 221

[GNY+01] Xiaohui Gu, Klara Nahrstedt, Wanghong Yuan, Duangdao Wichadakul,
and Dongyan Xu. An XML-based quality of service enabling language
for the web, 2001.

[JSSS01] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Sub-
rahmanian. Flexible support for multiple access control policies. ACM
Trans. Database Syst., 26(2):214–260, 2001.

[KFW03] Naren Kodali, Csilla Farkas, and Duminda Wijesekera. Enforcing in-
tegrity in multimedia surveillance. In IFIP 11.5 Working Conference on
Integrity and Internal Control in Information Systems, 2003.

[KW02] Naren Kodali and Duminda Wijesekera. Regulating access to SMIL for-
matted pay-per-view movies. In 2002 ACM Workshop on XML Security,
2002.

[KWJ03] Naren Kodali, Duminda Wijesekera, and J.B.Michael. SPUTERS: a se-
cure traffic surveillance and emergency response architecture. In submis-
sion to the Journal of Intelligent Transportaion Systems, 2003.

[Low99] Gavin Lowe. Defining information flow, 1999.
[Mul87] Ketan Mulmuley. Full abstraction and semantic equivalence. MIT Press,

1987.
[Nok] Mobile Internet Toolkit: Nokia. www.nokia.com.
[Osb] Sylvia Osborn. Mandatory access control and role-based access control

revisited. pages 31–40.
[PCV02] Kari Pihkala, Pablo Cesar, and Petri Vuorimaa. Cross platform smil

player. In International Conference on Communications, Internet and
Information Technology, 2002.

[RHO99] L. Rutledge, L. Hardman, and J. Ossenbruggen. The use of smil: Multi-
media research currently applied on a global scale, 1999.

[RvOHB99] Lloyd Rutledge, Jacco van Ossenbruggen, Lynda Hardman, and Dick
C. A. Bulterman. Anticipating SMIL 2.0: the developing cooperative
infrastructure for multimedia on the Web. Computer Networks (Amster-
dam, Netherlands: 1999), 31(11–16):1421–1430, 1999.

[San93] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer,
26(11):9–19, 1993.

[Sch99] B. K. Schmidt. An architecture for distributed, interactive, multi-stream,
multi-participant audio and video. In Technical Report No CSL-TR-99-
781, Stanford Computer Science Department, 1999.

[SF02] Andrei Stoica and Csilla Farkas. Secure XML views. In Proc IFIP 11.3
Working Conference on Database Security, 2002.

[Spy] Spymake. Integrated surveillance tools
http://www.spymakeronline.com/.

[VCM] Mobile VCMS. Field data collection system http://www.acrcorp.com.
[VSA] VSAM. Video surveilance and monitoring webpage at http://www-

2.cs.cmu.edu/ vsam/.
[WS96] Duminda Wijesekera and Jaideep Srivastava. Quality of service QoS met-

rics for continuous media. Multimedia Tools and Applications, 3(2):127–
166, 1996.

Author Index

Analyti, Anastasia, 58

Bettini, Claudio, 176

Chung, Seokkyung, 85
Cooke, Andy, 136

Dou, Dejing, 35

Farkas, Csilla, 199

Gray, Alasdair J.G., 136

Jajodia, Sushil, 176

Kodali, Naren, 199

Lam, Herman, 113
Lee, Minsoo, 113

McDermott, Drew, 35
McLeod, Dennis, 85
Motik, Boris, 1

Nutt, Werner, 136

Qi, Peishen, 35

Spyratos, Nicolas, 58
Staab, Steffen, 1
Su, Stanley Y.W., 113

Tzitzikas, Yannis, 58

Volz, Raphael, 1

Wang, X. Sean, 176
Wijesekera, Duminda, 199

	Frontmatter
	International Conference on Ontologies, DataBases, and Applications of Semantics for Large Scale Information Systems (ODBase 2003)
	Incrementally Maintaining Materializations of Ontologies Stored in Logic Databases
	Ontology Translation on the Semantic Web
	Compound Term Composition Algebra: The Semantics
	Dynamic Pattern Mining: An Incremental Data Clustering Approach

	International Conference on Cooperative Information Systems (CoopIS 2003)
	A Knowledge Network Approach for Implementing Active Virtual Marketplaces
	Stream Integration Techniques for Grid Monitoring

	6th IFIP TC 11 WG 11.5 Working Conference on Integrity and Internal Control in Information Systems (IICIS 2003)
	Information Release Control: A Learning-Based Architecture
	Enforcing Semantics-Aware Security in Multimedia Surveillance

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

